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Sec. I INTRODUCTION ANDPRELIMZNARY EVALUATION

The accuracy to which the positions can be determined using techniques

of celestial navigation depends to a great extent on the accuracy of the

navigation tables which in turn depend on astronomical constants and pa-

meters and the basic ephemeris data. The specific task of this contract

has been to generate a computer program in the ALGOL programming language

which produces ephemeris and ahnanac data for use on the lunar surface.

However, because the quantities are going to be computed on an electronic

computer, it has been possible to treat the problem in cgmplete generality.

Thus, with only relatively minor modifications, the Lunar Astronomical Navi-

gation System (LANS) can be applied to anynavlgatlon situation, including

the earth. If these computations were to be derived strictly for the moon,

several slmpllfylng assumptions could be made. However, such a program

would have to be rewritten, for example, if an ephemeris for Mars or for

Mariner IV were desired. The lunar navigation system (LANS) requires only

that the appropriate data be read in and some of the internal constants

adjusted. Otherwise no major revisions are necessary. Neither is accuracy

sacrificed because the methods used are the same, in most instances, as

those used by observatories in the generation of terrestrlal tables and

almanacs.

It must be said that the methods used in LANS are completely convention-

al. We have adopted these methods to our own particular needs and brought

them together into a consistent system. Thus, LANS represents a logical

extentlon of _rodlglous work which has gone into the production of the

terrestrial tables
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from our own.

listed below.

Miz:

The Astronom&cal Evhemeris (A.E.) and Th__!eAmerican Evhemerls and Nautical

Almanac (A.E.N.A.) And certainly the task of devlsingLANS would have been

more difficult if the excellent reference volume Explanatory Supplement t__o

th___eA.___EE,and A.E.N.A. had not been available. This text is invaluable to

those intimately involved in astrometry. Reference to this will be made

frequently throughout this report.

During the course of our investigation it came to our attention that

we were not the only ones interested in navigational ephemerides for use

on the moon. Gelins (1965) in a review appearing in the Foreign Science

Bulletin describes in some detail an ephemerls for use on the lunar sur-

face published in the U.S.S.R. The methods used differ in several respects

Some of the differences are basic so the more important are

The Russian tables were developed by Yakovkin, Dmenko and

I) The Russian table uses llbration constants computed on a flattening

value f = 0.82, we can input constants interpolated over a range of f

values. For sample calculations we have chosen f = 0.63 as indicated by

an extensive revlewby Goudas (1965).

2) The Russian method uses approximate corrections to terrestrial

ephemerides and hence are applicable only on the moon. They may not give

high accuracy in some cases

3) The Russian tables are computed assuming a uniform mean lunar

sidereal time defined as a specific number of terrestrial sidereal days,

Analogous lunar "hours, minutes, and seconds" were also defined. Since

lunar travelers will almost certainly have a knowledge of terrestrial time

and use a clock running on terrestrial mean solar time, Ephemeris, Universal
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or other mean solar time is the most convenient for navigation tables.

The most accurately determined uniform time is ephemeris tlme (E.T.) and

our table generation program uses this as the reference scale. If the out-

put is desired in mean terrestrial solar time (which is non-uniform) an

option is available which will enable interpolation to universal time (U.T.),

if the difference between E.T. and U.T. is known or can be predicted to a

fair degree of accuracy.

4) The Russian tables are apparently computed using Brown's theory

of lunar motion. The LANS system uses the lunar positions as provided by

the U. S. Naval Observatory. These are based on a recently improved lunar

theory and are considered accurate enough for timekeeplng purposes.

Although we have considerable confidence in our programs, there are

certain areas in which our present knowledge is limited. Also, it is

desireable to actually test the lunar llbration constants by direct obser-

vation. For this purpose we have proposed a contract extension dealing

specifically with these problems. Some of the problems encountered when

the programs are to be used for generating data of geodetic precision are:

I) size of free-libration terms

2) long-term periodic llbratlon terms

3) incomplete knowledge of local gravity anomalies after "geoid"

corrections have been applied

4) incomplete knowledge of center-of-mass coordinates of "geoid" center.

Computer software developed or modified under this contract are:

I) LANS BASIC TABLE GENERATOR

2) LANS ORBIT COMPUTATION ROUTINE

3) LANS EMPIRICAL DATA PROCESSOR

4) ORTHOGONAL FUNCTION FITTING ROUTINE

5) POWER SERIES LEAST-SQUARES FITTING ROUTINE

6) JULIAN DATE - CALENDAR DATE CONVERTER

7) CENTER-OF-MASS GENERATOR.
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Sec. 2 SPHERICAL ASTRONOMY AND NAVIGATION

In the early days of seafaring, the science of astronomy and the art

of navigation developed together. However, as the need for higher accuracy

in timekeeping and positions became more widespread, astronomy and navi-

gation parted company. National observatories and international commitees

were set up to generate fundamental astronomical data. These could be

used by astronomers directly, but were not suitable for use in navigation.

Therefore, navigation tables had to be generated separately and the task

was usually given to an agency other than a national observatory or almanac

office.

Celestial navigation on the surface of the earth does not require

very high precision. (The demands of positional astronomy require an

accuracy of an order of magnitude higher than navigation). Traverses from

one area to another is all that is necessary. Within these areas navigation

may be done by dead-reckonlng (using landmarks and high accuracy maps),

triangulation, LORAN (or other passive electronic system) or radar. But

these more modern methods are successful because of the extensive astronomlcal,

geophysical, and geodetic investigations which have been carried out over

large areas of the earth and over long periods of time.

But a detailed knowledge of astronomy or geophysics is not necessary

to do celestial navigation provided the appropriate tabular data is available.

In fact_ one can (and does) teach celestlal navigation to people with only a

high school mathematics background. The same can be said for the elementary

parts of spherical astronomy. Now when celestial navigation from bodies

other than the earth is considered, one should try to define reference and
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coordinate systems completely analogous to the terrestrial case. Thus,

standard methods tested on the earth can be applied successfully elsewhere

with a minimum of modification.

Although a user of an "astronautical almanac" might not be interested

in the complex calculations of the ephemeris data, others, particularly

those who wish to adapt our program to their own needs, should be familiar

with the basic astronomical concepts presented here. For a detailed account

reference should be made to the appropriate chapter or section of the

Explanatory Supplement to the Astronomical Ephemeris and the American

Ephemeris and Nautical Almanac. Except where noted definitions conform

with those in the Supplement and the recommendations of the Commission 4

of the International Astronomical Union, Sec. 2.1 Coordinate Systems (Chapters

i and 2 in the Explanatory Supplement). When a solid body rotates in the

absence of external forces, the initial conditions determine the direction of

the rotation axis. A plane perpendicular to this axis is called the equator.

The projection of the rotation axis on the celestial sphere is called a

ce!estlalpole. If the body is gravitationally connected with only one

other body, the conservation of angular momentum (assuming only central force)

requires that the orbits of the two be contained in the same plane. This

orbital plane intersects the equatorial plane in a line called the llne of

nodes. The great circle representing the projection of the equatorial plane

on the celestial sphere is called the celestial equator. The great circle

representing the projection of the orbital plane of the earth is called the

ec!iptlc. The great circle representing the projection of the orbital plane

of any other object is usually not given a special name. Likewise, the

term "equatorial coordinates" usually is taken to refer to coordinates
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relative to the earth's equator. The ascending nod____eeofthe ecliptic relative

to an object equator is the descending nod.._.eeofthe equator relative to the

ecliptic and is used as a prime coordiante direction. The north pole of the

ecliptic is the projection on the celestial sphere of the perpendicular to

the earth's orbit. This is given by a right-hand rule with the thumb in the

direction of the pole, the forefinger in the direction of the velocity, and

the middle finger in the direction of the center of mass. The north ce___-

lestial pole is defined by a similar right-hand rule with the forefinger in

direction of rotation of the body on its axis. The hemisphere (on the ce-

lestial sphere) between the north pole and the equator is called, obviously,

the northern celestial hemisphere. That between the ecliptic and the

northern ecliptic pole can be called the northern ecliptic hemisphere. Now

the ascending node is the nod_.__.eeofone plane ("A") relative to another ("B")

where a particle, confined to plane "A" moves according to a right-hand rule,

will travel from the southern hemisphere of plane "B" to the northern hemi-

sphere of plane "B". The descending node requires motion from "northern"

to "southern" motion.

The ascending node of the ecliptic on the earth's equator is given

several special names: the first point of Aries, the vernal equinox, the point

of Aries, or simply the equinox. If a set of rectangular axes are set up

relative to the earth's equator, they are called Reqtan_ular Equatorial

Coordinates. The Z-axis points northward, the X-axis points to the point

of Aries, and the Y-axls points such that X x Y = Z, i.e. right-hand system.

If the sun and the earth were only bodies in the solar system, the

ecliptic and equatorial systems would be equally stable reference systems.

(For observations from a planetary surface, an equatorial reference is more
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convenient than an ecliptic one, since in a spherical-equatorial system,

angular quantities directly analogous to terrestrial longitude and latitude

may be used to describe positions on the celestial sphere.) However, this

is not the case. The moon and planets exert torques on rotational axis

of the earth, as well as its orbital plane. Thus, neither the ecliptic nor

the equator represent invarient plane. There is, however, an appropriate

reference plane called, appropriately, the Invarient Plane. At any specific

instant of time, the ecliptic and equatorial planes can be defined relative

to the invarient plane. Likewise, the ascending node of the ecliptic, the

equinox, is specified uniquely at each time. Frequently one simply speaks

of "the equinox date" when actually the equinox, ecliptic, and equator are

meant to be defined. The equinox and one plane (either ecliptic or equator)

uniquely specify a fixed (prime, fundamental, invarient) reference system, if

an epoch is defined. Thus, it is more convenient to chose an equinox near

the dates concerned rather than be bothered with the transformations to,

and from, the invarient plane.

The differences between the ecliptic and the invarlent plane are always

small (_OU5 of arc) with periods of oscillation on the order of millions of

years. Hence the term "ecliptic" is often used to mean the invarient plane.

Because of the large perturbing action of the moon, the earth's equatorial

plane undergoes much larger changes with somewhat shorter periods of

oscillation. Thus, in order to obtain the coordinates of an object relative

to a movin_ reference axis (of the earth's daily rotation, for instance) two

correction terms are needed.

Precession is the component of axial motion which has a constant rate

of change when projected on the celestial sphere. Nutation includes all
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the remaining terms (both long and short period) necessary to describe the

residuals of axial motion once precession effects have been removed. If the

object is reasonably rapidly rotating, precession and nutatlon can be easily

separated.

However, for slowly rotating objects, such as the moon, it is much

easier to treat precession and nutation as a single perturbation of the axes

called physical libration.

The concepts discussed so far have assumed that there is an infinite

signal velocity, but this is not so. Coordinate definitions must take these

into account. Because the velocity of light is finite, the direction from

which a light ray is received by an object moving relative to an inertial

frame is different from that "seen" by an object at rest in the same frame

and at the same position. This effect is called the aberration of light.

It results because, a coordinate system at the center of the earth, even if

not rotating, is not inertial and a correction for abberation, in principle,

reduces the system to an equivalent inertial frame. (It should be noted that

correction for aberration only makes the system inertial in a relative sense.

It is not possible to find an absolute inertial system. Thus_ in the cor-

rections that follow, one obtains positions as seen for a coordinate system

at the center-of-mass of the solar system. This is called the local standard

o__fres__.__t.For interstellar navigation, a system which takes into account the

velocity of the stars relative to the local standard of rest must be used

or incorrect rectangular coordinate positions will be obtained.)

It is convenient to consider aberration of light from two standpoints.

If the stars are considered at rest relative to the center-of-mass of the

solar system (see parenthetical statement above), all positions can be
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reduced using a correction term which involves only the velocity of the

observer about the center-of mass. This correction is called the stellar

aberration term. This correction is applicable to situations where only

a comparison with the star background is needed. If a reduction to actual

coordinates is necessary, the total aberration, (frequently called the

planetary aberration) must be taken into account. It consists of two contri-

butions. First if the observer is moving relative to an object at rest

in the inertial system, a contribution of stellar aberration exists for the

observed position. Likewise, if the object were moving and the observer is

stationary (relative to the center-of-mass), the object would "see" a stellar

aberration of the conventional type. If bot_____htheobserver and the object

have motions relative to the center-of-mass, the two stellar aberrations

combine and give rise to the planetary aberration.

There is another way of looking at planetary aberration. If the earth

is regarded as fixed and a planet moves relative to it, the planet will have

moved during the time it takes the light to reach the earth. Thus, the

apparent position of the planet corresponds to where the planet was at

to - • (where T is the light-time),not where it is at to. The difference

in angular position between to and (to - _) is the planetary aberration.

Now that axial perturbations and aberrations have been briefly discussed, we

return to the discussion of coordinate systems.

A number of special coordinate origins exist.

a) Topocentric - coordinates centered at an observer. In LANS, topo-

centric is reserved for coordinates centered on an observer who is located

on the surface of a body with an independently defined gravitational field.
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b) Statlonocentric - coordinates centered at an observer's position,

particularly an observer who is no,t located on the surface of a body with

an independently defined gravitational field.

c) Selenocentric - center of moon.

d) Geocentric - center of the earth.

e) Barycentric - center of mass coordinates (body reference not specified.

f) Heliocentric - center of the sun.

Two types of coordinates are used predominately in astronomy - spherical or

rectangular.

There are three main kinds of positions.

a) Geometric - the actual, physical positions of the objects (as

required by the theory of gravitation in the case of planets).

b) Apparent - positions at which objects appear to be as a result

of aberration of light.

c) Astrometric - apparent positions which have been corrected so that

the object will be referenced to the same coordinate system as used in star

catalogues. The correction term is the stellar aberration minus a small,

nearly constant term.

Mo =A- (R- E)

where A is the apparent place, Mo is the mean catalogue place, R is the

complete stellar aberration term, E is the small correction term. If t

is the ecliptic longitude and 8 the ecliptic latitude, then the correction

E terms are

where

At = Ze sec S cos (_ - _)

A8 ffiKe sin 8 sin (_ - A)

K = 20_47

e = 0.01675 - O.00004T

= 101722 + I772T
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there T is the number of Jullan centuries (36500 days = one Julian century)

since 1900.0. Stellar aberration is contributed from three sources:

i) Annual aberration - aberration due to the motion of the earth about

the sun. Before 1960 corrections for annual aberration were made assuming

a circular orbit for the earth. After 1960, corrections took into account

the eccentricity of the earth's orbit.

2) Diurnal aberration - aberration due to the motion of the earth on its

axis. This is a topocentric correction.

3) Secular aberration - aberration due to uniform motion of the star relative

to the center-of-mass. This aberration is equal to the light-tlme of the

star times its apparent proper motion. It is customary, as noted earlier,

to omit the secular term in normal astronomical positions since the required

information for evaluation of the term is available only for a small number

of stars. If interstellar navigation is contemplated this term must be

evaluated before transforming to geometric coordinates.

Refraction is a topocentric correction which must be applied if a

reasonably dense atmosphere is present. Since the moon possesses no detecta-

ble "permanent" atmosphere, LANS does no__t_tinclude corrections for refraction.

These corrections when needed are most conveniently applied to the obser-

vations no___t_ttheephemeris. In the computation of rise and set times some

modification for refraction will be required.

See. 2.2 Time and Timekeeping (Chapter 3 of the Explanatory Supplement)

In this section, a brief summary of the types of times and their im-

portance to the ephemeris and navigation problem. One may get very involved

with the details of time determination, but this is not the purpose of this

section; only fundamentals will be presented.
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In the earlier days of astronomy it was thought that the rotation

rate of the earth was constant. Over the years, astronomers have come to

realize that the rotation of the earth is much less constant than the

Keplerlan motion of the earth and planets around the sun. The dynamics of

the solar system thus provide a set of periodicities which are much more

accurate for timekeeplng than the earth's rotation. Ephemeris time is a

time-scale which is the independent argument of gravitational motion. It

is considered a uniform time and so is naturally used as the argument for

ephemerldes. It is independent of a planet's rotation and hence cannot be

used, if the highest accuracy is desired, to predict topocentric phenomena

such as transits, rising and setting times unless the rotation rate is constant.

The hour angle (whether local or zero longitude) of the vernal equinox

is known as sidereal time. When ephemeris time is used to generate any

topocentrlc tables, the sidereal time obtained is Ephemeris Sidereal Time;

transits occur at the Ephemeris Merldian; and the longitude of the observer

is noted as Ephemeris Longitude. Also note that,

LOCAL SIDEREAL TIME = GREENWICH (ZERO LONGITUDE) SIDEREAL TIME - LONGITUDE.

Apparent sidereal time is the hour angle of the tru__..._eequlnox,while mean

sidereal tim____elsthe hour angle of the mea_._._nequlnox of date.

Time which depends on the rotation of the earth is called Universal

Time. Unlike Ephemeris Time it is subject to variation. Universal time

is a type of Mean Solar Time. If U.T. is used as the independent variable,

the sidereal time is called Universal Sidereal Time; the time reference point

is the Universal Mean Sun; transits occur at the Universal Meridian; and

the longitude of the observer is called Universal Longitude. For purposes

of navigation either the "ephemeris" or "universal" times may be used.
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For purposes of geodesy, the distinction must be made. In the LANS program,

the basic argument is ephemeris tim___%e.If the difference between Ephemeris

Time and Universal Time (AT) is known, then subtabulatlon routines are availa-

ble. However, Universal Time is only a convenience for terrestrial obser-

vers, since lunar sidereal time, as defined later, uses ephemeris time as

the independent variable as it logically should - lunar rotation, after all,

I

!
I

io reasonably independent of the earth rate. The coordinates produced using

E. T. as the generating argument will be apparent coordinates except for

the earth where Ephemeris meridians, sidereal times, and longitudes will be

generated. For the earth, apparent coordinates can be generated (not corrected

for nutation) if U.T. _s used instead of E.T.

I

I
I

Frequently in astronomy, intervals of mean solar days (ephemeris days)

ere greater than thirty. In order to overcome the inconvenience of month

and year conversions, the concept of Julian days was introduced. Julian Days

begin at Greenwich noon not midnight as do Civil Days. Hence 0.0 U.T. is

0.5 Julian Days. The fundamental epoch January 0_5 1900 E. T. = Julian

I Ephemeris Day 2415020.0.

!

I

I

Zac. 2.3 Establlshment of Preliminary Coordinate References for Navigation

Geodetic Exploration on Extraterrestrial Bodies.

In Sections 2.1 and 2.2, some concepts of terrestrial astronomy have

been briefly reviewed. In this section, we apply these concepts to our

particular problem - setting up a navigation ephemeris for the moon or another

I
I

I

planet.

One assumption is made at the outset; it is assumed that for the body

under consideration (i.e. the moon) the rotational motion is not well known

enough to be able to make a distinction between ephemeris time intervals
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and rotationally defined "universal time" cannot be made so that sidereal

tim_.____e,meridian, and other terms take on their conventional meanings.

Consider a body whose axis of rotation is instantaneously (or longer)

pointed in a specific direction. Perpendicular to this axis is an equatorial

I

I

I

_, Relative to the ecliptic plane, this equatorial plane makes a cer-

tain angle i (called the inclination or obliquity) at the line of inter-

section (see Figure I). If a right-hand rule is used to define the rotation

axis, the smallest angle between the planes is called i and the direction

of intersection where rotation carries a point on the body from the northern

I
I

!

to southern ecliptic hemispheres is called the descending nod____eeofthe equator.

Coordinates relative to the ecliptic plane are spherical. Ecliptic

(or celestial) longitude, A is an angle measured counter-clockwise in the

plane of the ecliptic from the point of Aries; ecliptic (or celestial)

latitude is an angle 8 measured perpendicular to the ecliptic plane. The

I

I
I

descending node is at a longitude of _.

Coordinates relative to the equatorial plane are also spherical. Right

ascension (_ or R.A.) is measured (from the descending node) counter-

clockwise (right-hand rule) in the equatorial plane. Declination 6 is

measured perpendicular to the equator. Declination is expressed in angular

I

I

I

units, but right ascension, for convenience, is divided into time units;

360 degrees equal 24 hours; 60 minutes equal an hour; 60 seconds equal a

minute. (One hour of R. A. - 15 ° of R.A.). The angle (in time units)

between the prime meridian is called the zero-meridian sidereal time. The

difference in angle between the local meridian and the prime meridian is

I called longitude. Longitude is positive in a clockwise sense. The north

celestial vole is the direction given by a rlght-hand rule. If _ and i are

I
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known it is possible to convert _, B into a, 6 by a trigonometric trans-

formation.

cos 6 cos a = cos B cos (_ - _)

cos 6 sin a = cos B cos (_ - _)

sin 6 = cos B sin (_ -_) sin i + sin 8 cos i

The conversion from stationocentric, geocentric, or selenocentric coordinates

(a, 6) to topocentric coordinates (altitude, azimuth) is also straight-forward.

The various relationships are shown in Figure 2.

Consider a "celestial" hemisphere positioned over the equatorial plane.

The radius vector to a "star" intersects the celestial sphere in a "sub-

point." The subpoint makes an angle _ (= Declination) with the equatorial

plane and an angle L.H.A. (= Local Hour Angle) with the local meridian of an

observer. The prime meridian is located at an angle '_LONGITUDE °_ from the

local meridian. The local zenith is on the local meridian and is in the

same plane as the north celestial pole. The zenith makes an angle "LATITUDE"

with the equatorial plane. The relation between local sidereal time and

zero-meridian sidereal time is also shown. The plane perpendicular to the

zenith is called the horizon. A plane through the observer intersecting

the horizon in an east-west line and parallel to the equatorial plane is

called the observer's (or local) equatorial plane and is also shown in Figure

2. Concentric with the observer is the local celestial s_here. The local

equatorial plane intersects the local celestial sphere in the celestial

equator as shown in Figure 3. The descending node 8 of the equator is confin-

ed to the equatorial plane. The angular distance from 8 to the local meridian

is ST, the local sidereal time. The angle ALT is the altitude of a star

relative to the spherical horizon. The altitude of the north celestial pole

is the spherical LATITUDE. The spherical (or local) zenith is the perpen-

dicular to the horizon (local). The_eoid zenith is defined as the normal



I

I

I
STAR

NORTH CELESTIAL POLE

HOUR ANGLE PRIME OR

:ERO LONGITUDE

MERIDIAN

GEOCENTRIC AND

POSITIONS

"u"

FIGURE 2.

_, t 8

TOPOCENTRIC

LOCAL ZENITH

OBSERVERIS

EQUATORIAL

PLANE



I

I

I
I
I

I

I

I
I

I
I

I

I
I

I

I

I
I

I

NORTH

RA :

HA :

ST :

DEC •

FIGURE

CELESTIAL POLE

GRAVITY ZENITH

LOCAL ZENITH (SPHERICAL)

GEOID

ZENITH

CELESTIAL

TRIAHq

/
/

/

/
/

/

OBSERVER'S

EQUATORIAL PLA

/
/

\
, \

\
LATITUDE

ZENITH

/
LOCAL

MERIDIAN

\ALT.

CELESTIAL EQUATOR H ORIZON

RIGHT ASCENSION

HOUR ANGLE

SIDEREAL TIME (LOCAL)

DECLINATION

3- LOCAL REFERENCE SYSTEM

CI RCLE OF

"U"

EQUAL

STAR

\
\

\
\

I

I

19

RA

TO SUB POINT

SOUTH



2O

CELESTIAL

POLE

%

ZENITH

STAR

FIGURE 4 THE CELESTIAL TRIANGLE



NORTH ECLIPTIC POLE
NORTH CELESTIAL POLE

Z

STAR

I

I

[ Xx,

I

\
\

\

\
\

\

XYZ SYSTE M EQUATORIAL

X'Y Z SYSTEM ECLIPTIC

= Right Ascension
= Declinotion

E = Obliquily of ecliptic

Y

2,1

FIGURE

ECLIPTIC

5 RELATION BETWEEN

AND EQUATORIAL SYSTEMS



-22-

to the tangent to the "geoid" at the position of the observer. The _ravity

zenith is the zenith which goes through the observer, but is parallel to

the gradient of the gravitational field. The three zeniths coincide only

if the "geoid" and the gravity field have spherical symmetry and the center-

of-mass and center-of-figure coincide. The zenith distance is the angle

between the star and the spherical zenith as seen by the observer. The

topocentric right ascension is the angle, measured in the equatorial plane,

from _ to the perpendicular (through the star) to the equatorial plane (RA).

I
I

I

The local hour angle (HA) is (RA - ST). The declination (DEC) is the angle

between the star and the equatorial plane. The azimuth of the star is the

angle (AZ), measured clockwise from "north" to the direction of the subpoint

of the star. The conversion between the RA/DEC system and the ALT/AZ system

is accomplished using the so-called "celestial triangle" as shown in Figure 4.

Using the triangle the "law of sines" and "law of cosines" the transformation

equations are:

cos ALT sin AZ = - cos DEC cos HA

cos ALT cos AZ = sin DEC cos LAT - cos DEC cos HA sin LAT

sin ALT = sin DEC sin LAT + cos DEC cos HA cos LAT

HA= RA - ST.

It can be seen that the earth equatorial system is obtained if the angle

between the descending node and the point of Aries is zero (_ = 0). The

conversion is simply a rotation relative to the X'Y'Z' ecliptic coordinates

of the XYZ equatorial system through the angle U (see Figure 5). Likewise,

the altitude-azimuth conversion is a rotation through an angle (90 ° - LAT)

in the meridian plane.

The ecliptic coordinates of an object are the same regardless of the

equatorial reference used. In the LANS program-reductions, the conversion

is made from X, Y, Z to X', Y', Z' (Figure 5) to A, B and distance. Then,
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these are converted using spherical trigonometry to an a, 8, distance system.

The a, 8, thus obtained, however, do not necessarily correspond to the earth

a, 6 system (see Figure 6). This double conversion has the advantage that

only the precession of the generalized system has to be computed. The normal

procedure (Astronomical Ephemeris) is to convert directly from earth a, 8

to the generalized a, 6 without finding _ and _. But although this does

involve fewer initial calculations and is more adaptable to logarithmic

computation, it has no advantage for LANS or similar computations where elec-

tronic computers are used. It also requIEes the precessional computations

for the earth as well as for the other body.

Before the coordinates _, 8 can be found, a transfer of origin is

necessary. The available planetary theory tables (ephemerldles) are helio-

centric, Kectangular (earth) equatorial coordinates, epoch 1950.0. The

positions of the sun are 1950.0 geocentric equatorial coordinates, which

if negated give heliocentric coordinates of the earth. The positions of

the moon are also 1950.0 geocentric (earth) equatorial coordinates. Since

all of these coordinates are equatorial, rectangular coordinates, a change

or origin can be accomplished rather easily. The vector relations are shown

in Figure 7.

If

of sun,

of planet,

R = geocentric vector of sun, p = seleocentrlc vector

B

(-p)

';= selenocentrlc vector
r = geocentric vector of moon, rp

rp = geocentric vector of planet,

r6 = heliocentric vector of planet,

= heliocentric vector of moon (or station),

rcm = heliocentric vector of center of mass of solar system,
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thus a reduction to a center-of-mass system and to a selenocentric or

statlonocentrlc system is expressed by the vector relations:

Station

r + P = R .....(1)

rp - R - r_ ..... (2)

-' +_ --" .(3)
rp rp ....

r - R -- (-p) ..... (4)

= (-p) (5)C-P)- rcm cm .....

R + rcm = Rcm ..... (6)

Center

of

Mass

;cm (--p) (7)r - _ r cm ' ....

These transformations require no parallax corrections. However, the positions

of the stars do require a correction for stellar parallax if the "base-llne"

orbit size is changed. For the moon, the stellar parallax corrections are

nearly negllglble except for the nearest stars. However, the generallzed

concepts used in LANS require that it be included if the heliocentric dis-

tance is much different from unity. Figure 8 shows the three main parallaxes

of concern in astronomy and the base-llnes which are used to measure them.

In LANS, a lunar horizontal parallax correction is applied, if necessary,

before the flnal topocentric coordinate conversion. The base-llne in this

case is the station center-of-mass radius vector.

Figure 9 illustrates the aberration of llght as discussed in some detail

in Sec. 2.1. Consider two bodies moving relative to an inertial frame origin

(center-of-mass). From a classical standpoint, a star is considered fixed

relative to the center-of-mass. Then as a photon travels in a straight path

relative to the center-of-mass, a telescope on one of the moving bodies has

to be tilted so that it can "catch" the photon. Unless the telescope is
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tilted, the photon "collldes" with the side of the tube. Since all photons

are affected, the stars all appear "tilted," hence stellar aberration. It

results from motion of the observer. The planetary aberration component _s

is the difference in ray angle due to the_motion. If _p is the

stellar aberration component, then the total planetary aberration _ is

= ¢s + ¢p = (relative tangential velocity)
(veloclty of light)

Secular aberration is not shown. The stellar aberration is more correctly

termed annual aberration, if the orbital motion of the observer is assumed

circular. In LANS, stellar aberration is computed using numerical

diffentiation of the observer's coordinates and planetary aberration is

computed using interpolation back to an epoch (to - T) where T is the light-

time.

The rotation rate of the observer is used to compute the diurnal

aberration, if this correction is necessary. For the moon, this correction

is negligible, but the capability is included for generality.

In Sec. 2.1, it was mentioned that the combined effect of precession

and nutation was called the physical llbration. This is not to be confused

with the optical librations which are demonstrated in Figure i0.

Consider for the moment that the body (moon) rotates at exactly a uni-

form rate. A prime meridian then sweeps out equal areas and equal angles

in equal times. Suppose, however, that the body is in an elliptical orbit

about some center-of-mass. While the body rotation sweeps out equal angles,

the Keplerian motion certainly does not, but only sweeps out equal areas.

Of course, if the orbit were circular, the rotation and revolution would be

exactly synchronized. The difference in angle between the radius to the
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center-of-mass and the radius to the center of the elllpse is called the

longltudlnal llbratlon (optlcal). If there are small variations of rotation

rate, these show up as phTsIcal longltudlnal llbratlon.

Suppose now that the body rotation axis is not parallel either to the

terrestrial pole or to the perpendicular to the orbital plane. Thus the sub-

earth point will be alternately above and below the lunar equator. These

are called (optical) Latitudinal Libratlons. The Dhyslcal latitudinal

libratlons are prlnclpally due to nutatlon of the body axis. It should be

noted that because of precession, the long-term oscillations in longitude

are not strictly periodic.

The lunar physlcal llbratlons have recently been studied by Eckhardt

(1965) at the Air Force Cambridge Research Laboratories. Dr. Eckhardt kindly

provided us with a grid of llbratlon constants over a +_3o range around the B, Y

best values now available, especlally for use in LANS. The current version

of LANS uses libratlon constants which are considered to be the best current-

ly a-ailable. Although only 22 coefficients are kno_nl, there is room for

45. This was done so that a single or a few constants could be changed or

added without disturbing the program itself. If the "best" values for the

moments-of-lnertla are incorrect, an entirely new set of constants may be

generated using the auxiliary two-dlmensional interpolation program. The

storage requirements for such a program internal to LANS is prohibitive for

the general case.

The Eckhardt solutlons are for the forced llbratlons only. The solutlons

of the "free-oscillatlons" have not been included, since they can only be

evaluated emplricall 7 . Likewise, long-period forcing terms are not included

although they probably do exist. Not enough empirical evidence for
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free-librations or long-perlod terms is available. If and when coefficients

are available, it will be a simple matter to include them in LANS. ALL the

necessary auxiliary angular arguments are already available internally.

Short-term corrections to inaccuracies in the llbration constants may be

obtained from observation using the empirical data reduction program in

LANS. The corrections, however, do not indicate which periodicities are

present and which are not. Such a study to find the long-term and free

llbrations has been proposed as a contract extension of this investigation,

but has not yet been taken up in detail.

Figure ii illustrates the lunar physical librations. These librations

are computed under the following assumptions:

a a) The luanr rotation rate is uniform and constant, to the first

order. The lunar prime meridian has a constant angle with the mean longi-

tude of the moon.

b) The lunar precession has the same period as the precession of

the line of nodes of the orbit and, in fact, the equatorial line of nodes

coincides with the orbital llne of nodes.

c) The mean axial inclination of the moon is constant at least to

first order.

The above constitute Casslni's Laws of Rotation. These are only true

to the first order. In a physical sense then, the (physical) librations

represent perturbations to W, the mean rotation rate, to I, the mean axial

inclination, and to U, the mean longitude of the descending node of the

equator. Since _ has a known secular part, the precession, it is usually

removed before the physical llbratlons are solved for _. Thus if W' I'
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and _' are the instantaneous values, these are assumed only to be a small

amount different from W, I, _. Thus

W' =W +AW

I' =I +Ai

_' =_ +A_

These perturbations are not convenient for computation of coordinates,

so another convention is used.

o = longitudinal libration

p = latitudinal libration

T = rotational libration

The relationships of the small angles are shown in the diagram (Figure ii)

and are covered in detail by Eckhardt (1965).
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Sec. 3 SPECIFICATION OF THE LUNAR PROBLEM

In the proceeding sections, we have discussed the problem of

astronomical ephemeris data from a generalized standpoint. In this

section we concentrate on the problem of celestial navigation from the

lunar surface.

I

I

I

The calculation of apparent selenocentric object coordinates with

complete aberrational and parallactic corrections from heliocentric or

geocentric data is straight forward, although lengthy. The appropriate

transformations are performed in the basic program of LANS in accordance

with the recommendations for ephemeris calculatlon as outllned in the

I

I
I

Explanatory Supplement to the Astronomical Ephemeris (1960). Likewise,

the topocentric coordinates and corrections have been computed with

notation and convention similar to those used on the earth. A conscious

effort has been made to maintain as close analogy with the problem of

celestial navigation on earth as was possible. Some differences do re-

I
I

I

main which are discussed in this chapter.

The lack of a permanent or appreciable atmosphere on the moon elimi-

nates refraction as a factor in the lunar navigation so this was not

considered. The Explanatory Supplement has a short section (2E), but

includes a number of more important astronomical references.

I
I

I

The Astronomical Ephemeris for the earth contains the following data

for the mea___nnlunar equator, (quoted from the Explanatory Supplement):

a) i = the inclination of the mean equator of the moon to the true

equator of the earth.

b) A = the arc of the mean equator of the moon from its ascending

node on the true equator of the earth to its ascending node on the ecliptic

of date.
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c) _' = the arc of the true equator of the earth from the true

equinox of date to the ascending node of the mean equator of the moon.

For the purposes of a precise lunar ephemeris these quantities are not

satisfactory for a number of reasons.

1) These are derived assuming Hayn's approximate mean inclination

of the lunar equator to the ecliptic of I = 1°32 t-

2) These do not include nutation of the lunar pole.

3) They refer to the tru_._eeequator of the earth not the 1950.0

equator.

The "Ephemeris for Physical Observations" of the Astronomical Ephemeris

is somewhat better, but also has shortcomings.

Hayn's values for the mean lunar equator and the physical librations

constants were used to derive a, T, 0 and then calculate:

a) Selenographic longitude and latitude of the earth.

b) Selenographic position of the sun.

The calculatlons are discussed in the Explanatory Supplement pp. 316-326.

_ile these methods are reasonable satosfactory for an earth ephemeris

where only 0_001 accuracy is needed, the Hayn (1907) values adopted are

probably not the most accurate. In addition, a number of approximations

and auxlllary quantities are introduced which are not required for elec-

tronic data processing. We have therefore reformulated the problem.

Solutions for lunar nutatlon have been recently derived by Eckhardt

(1965) using direct numerical integration of the equations of motion.

Hayn (1907), however, did not have a modern high-speed computer and so his

investigations involve a number of approxlmetions. Koztel (1962), Jeffreys

(1961), Watts (19§S), and Coudas (1966)have made some more recent
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determinations of parameters directly or indirectly influencing the

libration coefficients. The review artlcle by Kozlel (1962) should be

consulted for a discussion of the work previous to 1958. The notation

used by Hayn has been retained. The arguments used for the computation

I

I

I

lunar llbratlons are the same as those used to compute the nutatlon of

the earth"s axis, namely I, I', F, D, and _.

I = L - _ = mean anomaly of moon

1' = L' - _' = mean anomaly of sun

F = L - R = mean nodal distance of moon

I

I
I

D = L - L' = mean elongation of moon from sun

L = mean longitude of moon, _ = argument of perigee

L' = mean longitude of sun, _ = argument of perlhellon

- ascending node of the moon.

Eckhardt (1965) gives expansions of o, 0, T, and values of I for various

I

I
I

values of moment of inertia parameters. He has kindly supplied tables of

libratlon constants especially for LANS. An interpolation schame allows

computation of the coefficients. These with subsequent corrections, if

necessary, can be entered Into LANS from outside.

The moment of inertia parameters used for coefficient interpolation

are a, B and 7. But

y = - _(I - f) f = - ale

I

I
I

so only two values B, Y oz B, f need be specified. The parameters a, B, 7

are deflned In terms of the principal moments of inertia A, B, C by

a- (e- C)IA e =C-A Y= B-A
B C

The tables provided by Eckhardt are in terms of B and f over the ranges

0.59 < f < 0.65

0.000 60 < B < 0.00066
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Now the best value of f Jeffreys(1961) is f y 0.639 +__0.014; that

for 7 Is +0.000 2274 +_0.000 0088 which results in a B of 0.000 637. Thus,

the ivalues of f and B are still uncertain and over much larger ranges

than the quoted probable errors seem to imply. There is considerable evi-

dence which indicates however, that B and f are within the ranges stated

above. For initial table generation tests B = 0.00064 and f - 0.64 where

chosen.

When the Lunar Orbiter data analysis is complete very accurate values

of B and f should be available and the libration coefficients may be deter-

mined with more confidence (_Ltchael and Tolson, 1965). At present this

is the best that can be obtained. We feel that the values used are more

realistic than those used in the Russian ephemeris (see section 1) computed

by Yakoukln, Demenko, Niz' in 1964, but more data is needed to establish

this. After the libration constants are specified it is possible to obtain

the apparent axial coordinates as seen from the center of the moon. Thus

apparent lunar right ascension, declination can be found for any object

whose geometric (gravitational) ephemeris is available. As a consequence

of the correction for librations, it is possible to find lunar apparent

sidereal time, unlike terrestrial time, is relatively non-uniform even over

relatively short intexvals. One could, as in the case of the Russian

ephemeris, define a uniform sidereal time for the moon, but we found this

of no practical value since ephemeris is a uniform time which is well-known

and presumably will be available to users of lunar navigation tables.

Likewise, no uniform lunar solar time is defined or used.

If the sun is treated as a planet, the zero longitude sidereal time

and hour angle of the sun are obtained in an intermediate step in the LANS
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topocentric conversion procedure. They may be outputed, if desired, by

setting an option. These are apparent times and are non-uniform. Once

zero-longitude sidereal time, right ascension, and declination at the

center of the moon have been found, the topocentric conversion can be made.

The topocentrtc conversions are really a geodetic astronomy problem.

Because of the rather high degree of syannetrywhich the gravitational field

and "geoid" of the earth possess, topocentric corrections accurate enough

for most purposes assume that only the lines of longitude are not great

circles. These are usually considered to be ellipses. It is also assumed

that the center-of-mass and center-of-figure of the earth coincide.

In the case of the moon, there are several complications:

1) The center-of-mass and center-of-figure of the moon do no___tcoln-

cide.

2) The geoid and gravity field of the moon are too irregular to

permlt accurate description of topocentric corrections by assuming simple

geometric shapes.

3) Local Deflections of the gravity vertical may be considerable,

but no data is yet available on these.

Complications (1) and (2) are taken into account in LANS, but only estimates

of (3) can be given at the present time. These will be discussed later

The center-of-mass is origin for astronomical selenocenric coordi-
I

nares.

It is also the origin for selenocentric coordinates derived using the

gravity field. The center-of-figure, however, is the coordinate origin

for geodetic studies of the shape of the moon. It is also the origin
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for the normally defined spherical longitude and latitude system. If the

two centers are no___tcoincident corrections must be made.

In LANS, topocentric corrections are made relative to the center-of-

figure system. Corrections for horizontal parallax are made first by a

translation to the center-of-figure, then to the surface.

The lunar geoid and gravity field have been investigated using spheri-

cal harmonics by Goudas. In a recent review article (1966), he derives

expressions for an eighth order geotd; then he derives, on the assumption

of a homogeneous mass distribution, a fourth order spherical harmonic

expansion for the lunar potential field. For a number of the coefficients,

the values depend strongly on the data used to derive them. These represent

the best data available at the time of compilation of LANS so they have

been incorporated into the basic program. These functions are generated

as functions of geodetic radius and spherical longitude and latitude

(center-of-figure). However, only the fourth order expansion of the geotd

and 4th order gravity field give reasonable values.

When Lunar Orbiter data becomes available, it is very likely that

the lunar gravity potential will be generated as a function of the coordi-

nates relative to the center-of-mass. If this is true, setting an option

will make the conversion from center-of-figure to center-of-mass before

generating the gravity parameters.

In the problem of celestial navigation, a number of methods of solution

utilize altitude - azimuth reference systems. On the moon, there are three

topocentrlc reference systems which might be useful. The spherical system

uses the spherical radius vector at the given LONGITUDE/LATITUDE for the

zenith reference. The surface system uses the normal to the geold for the
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reference. The gravity system uses a "smoothed" gravity vector for the

zenlth reference.

In practice, none of these systems is avallable to an observer with-

out some knowledge of local conditions. On the surface of the earth it

I
I

I

is usually assumed that the surface system and the gravity system coincide.

At sea, this is rigorously true since for a fluid, the local shape is

determined by the gravity field. But on the moon there are no fluid seas.

If there were any "dust" maria on the moon, these could be used in an

analogous manner to terrestrial seas, but evidence now appears to indicate

I

I
I

that the maria are definitely not "dust-bowls." The maria, however, do

appear to be relatively "flat." Horizon references might be defined for

these areas, as can be done in plains or deserts (to a llmlted extent) on

the earth, but the precision will be lower than for a gravity reference.

A surface reference system, however, can be used to determine relative

I

I
I

slopes of terrain.

The spherical system is the standard astronomical reference. It is

mathematically much simpler than the gravity or surface system, but it

is not practical for accurate navigation. A spherlcal system referenced

to the center-of-mass can be obtained upon option from LANS, but is not

used for computation.

The most practical system available for navigation is one using a

gravity reference. Although the gravity vector is more constant in direction

than the normal vector to the "horizon," it is subject to local variations,

which are called deflections of the vertical. (It should be noted that

deflections of the vertical occur for "geoid" reference systems as well

as for gravity ones).
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For our purpose here, we define a deflection of the vertical as

being made up of two components:

a) general deflection of the vertlcal is the angular difference

between the spherical zenith and either the geold zenith or the "smoothed"

gravity zenith.

b) local deflection of the vertical is the "local" stochastic angu-

lar difference between the true local gravity and surface zeniths and

their computed "smooth" values.

The total deflection is the general plus the local deflection and

represents the deflection of the true zenith from the spherical one. For

the moon, the general deflections can be rather sizeable, much larger than

for the earth and are very non-linear. It can be shown also that the maxi-

mum local deflections can also be rather large (see later section).

In LANS, altitudes and azimuths of objects can be referenced to a

number of different systems upon option.

A. SPHERICAL - CENTER-OF-FIGURE

B. SPHERICAL - CENTER-OF-MASS

C. TRIAXIAL ELLIPSOID - CENTER-OF-FIGURE

D. TRIAXIAL ELLIPSOID - CENTER-OF-MASS

E. GENERAL HARMONIC SURFACE - CENTER-OF-FIGURE

F. GRAVITATIONAL POTENTIAL FIELD - CENTER-OF-MASS.

If observations are made relative to a tru____eehorlzonor gravity gradient,

the longitudes and latitudes obtained would not be, in general, the spheri-

cal center-of-flgure ones. The longitudes and latitudes obtained after the

stochastic deflection of the vertical is taken into account are called

the pseudo coordinates of the position. In LANS, corrections to convert

pseudo coordinates to spherical coordinates can be generated as orthogonal

polynomial expansions using pseudo-coordlnates as arguments. Of course,
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there is no way to go from observed coordinates to pseudo coordinates as

yet. This would require information, not presently available.

Since deflections of the vertical can occur perpendicular to the

meridian as well as along It, IANS Basic Program outputs the deflections

as deviations of latltude and longltude. Because the llnes of longitude

tend to converge, the numerical values of the longitude deflections get

larger toward higher latitudes. The actual angular deviation Is

A6 = /(_Lat) 2 + (Long) 2 cos 2 Lat

where 46 = general deflection of vertical.

The local, stochastic variations wlll be discussed in detall in

section five.

Although a simple orbit calculation routine Is included In LANS,

the highest accuracy can only be obtained if the best hellocentrlc ephemerl-

des for the sun, moon, earth, planets and stars are available for use.

The U. S. Naval Observatory Nautical Almanac Office is the source of such

data In the United States. They have available, on tape, the following

required ephemerldes and their publlshed sources, if any.

a) Geocentric positions of the sun, rectangular, equatorial, 1950.0

coordinates (Astronomical Papers, Vol. XIV).

b) Geocentric equatorial, rectangular, 1950.0 coordinates of the moon,

In earth radii, (U. S. Naval Observatory Circular, No. 91).

c) Hellocentrlc planet positlons, equatorial, 1950.0, rectangular

coordinates, (Astronomical Papers XII, XV (Part III), U. S. N. O. Circulars

90 and 95, Planetary Coordinates (1960-1980).

d) Stars 1950.0 mean posttions (FK3, £K4, Apparent Places of Stars

(after 1960).
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IV).

e) Center-of-Mass of the Solar System (Astronomical Papers XIII

The (e) entry is not available on existing tapes and for the purposes

of LANS, it might be easier to generate the data rather than punching the

cards to make the tape. Here are the necessary formulae. If Xo, Yo, Zo

are the heliocentric coordinates of the center-of-mass, Mn = the planet

mass in terms of the solar mass, and Xn, Yn, Zn are the heliocentric

coordinates of the nth planet, then the heliocentric distance of the center-

of-mass is given by

Xo = E mnXn

(I+

Yo = E mnXn

(I + r_n)

Zo = _ _nxn
(1 + _mn)

A table of mn values as well as other gravitational constants may be found

on p. 493 of the Explan@tory Supplement. An Auxiliary Program in LANS

calculates the center of mass position if xn, Yn, Zn are known.

It was not possible during the development of LANS to fabricate any

input data tapes, because master tapes were not available to the investi-

gators and because it was not possible to predict the I/0 modes that

ultimately will be used with LANS. Present input for the basic program

is by punch cards. Output is line printer and punch cards. Since I/0

is basically a programmer's problem and not a scientific one, only the I/0

necessary for testing has been considered. Tape and dlsk I/0 are left to

the choice of the users.
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Finally, two further items are included. Fizst, in outllne form,

the main LANS programs and their general functions are summarized.

Secondly, also in outline form, the auxiliary programs are summarized.

A detailed flow chart of the LANS BASIC Prozram is presented in Appendix i.

Because the Empirical Correction Program and Orbit Program are

adaptations of previously existing programs no detailed explanations of

these will be given. This is also true of the auxiliary programs. These

were developed for testing purposes. Their external functions are not

included in the contract scope, but they should prove useful for future simu-

lations.

Lunar data and constants used in LANS not referenced explicitly have

been obtained from Allen (1964) or from the Explanatory SupRlement (1960).

Numerous other references can be found in each as well as the review by

Goudas (1966).
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l) BASIC PROGRAM (A1)

A. MAIN PROGRAMS - LANS.

a. STATIONOCENTRIC COORDINATES.

b. TOPOCENTRIC COORDINATES AND PHENOMENA.

c. TOPOCENTRIC PSEUDO COORDINATE TABLES.

2) EMPIRICAL CORRECTION PROGRAM (A2)
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a. DETERMINES LONGITUDE/LATITUDE from observation.

b. DETERMINES SPACEDRAFT ORIENTATION from observation.

c. PERFORMS STATISTICAL ANALYSIS OF OBSERVATIONS.

d. PERFORMS TIME CORRELATION ANALYSIS OF NON-RANDOM RESIDUALS.

e. DETERMINES SHORT TERM SECDiJ_R OR PERIODIC EMPIRICAL CORRECTIONS,
IF RESIDUALS ARE NON-RANDOM.

f. CORRECTS OBSERVED LONGITUDE AND LATITUDE ASSUMING LOCAL

DEFLECTIONS NEGLIGIBLE.

3) GAUSS ORBIT CALCULATION PROGRAM (A3)

I)

2)

3)

4)

5)

6)

a. FINDS SINGLE SET OF ORBITAL ELEMENTS USING THREE POSITIONS

OVER LONGEST TIME INTERVAL.

b. FINDS MULTIPLE SETS OF ELEMENTS FROM OBSERVATIONS TAKEN THREE

AT A TIME.

c. MAY BE MODIFIED TO OUTPUT EQUATORIAL ELEMENTS Ax, Ay, Az, Bx,
By, Bz instead of a_ e_ m, i_ G.

B. AVXILIARY PROGRAMS

POWER SERIES LEAST-SQUARES - Upon Option will take ORBITAL ELEMENT DATA

from (A3) and supply coefficients for (A1), if time-dependent orbital
elements are used.

ORTHOGONAL POLYNOMIAL SURFACT FIT - Takes differences between spherical

longitudes/latltudes and pseudo coordinates as generated by (A1) and

generates the required polynomial coefficients needed in (A3) to make

corrections back to spherical coordinates.

LIBRATION COEFFICIENT INTERPOLATION PROGRAM - Input of appropriate 8 and

f values gives a punched deck of llbratlon coefficients.

CENTER-OF-MASS GENERATOR - Takes planetary coordinates of all planets and

finds center-of-mass of Solar System.

CALENDAR DATE - JULIAN DATE CONVERTER.

NEWTON INTERPOLATION SCHEME.
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Sec. 4 Empirical Test Programs and the System Operation

As mentioned previously several test progrmas were developed for use

with LANS - BASIC Program. It is beyond the scope of report to explain

The methods used are standard. The followlng referencesthese in detail.

are recommended.

i)

2)

3)

routines are docmnented within the program listings.

Empirica ! Test Program (A2)

(a) Statistical Analysis - Hafley, Wilkinson, Fardo (1964)

(b) Time Series Analysis - Korn and Korn (1961)

Orbit Program - Dubyago (1961) (A3)

Other programs which are modifications of standard Burroughs Library

(see sec. 7).

(A) Empirical Data Program

Of course, the empirical test program actually requires rea____Idata for

meaningful results. Here is a description of its operation.

i) Observed altltudes/azlmuths are Inputed along with statlonocentrlc

object coordinates.

2) Upon option either the Iongltude/latltude or appropriate coordinate

constants are found by least-squares. The least-squares solution uses

"normal" trigonometric transformation equations.

The longltude/latltude option is called MOON. Using option space/craft,

coordinate constants can be found either in the case of a rotatlngspace-

craft or a stabilized spacecraft. For a rotatln_ spacecraft two modes can

be used.

a) Time-dependent observations of a slngle object options SINGLER

and HOLDER (see section 7) must be set true (1).
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b) Observations of a number of objects. Option HOLDER MUST BE FALSE.

Option SINGLER SHOULD BE SET TRUE. (i), if residuals are to be analyzed.

For a non-rotating spacecraft, Option HOLDER MUST BE SET FALSE. Input

of observations of a single object will no_../tprocess correctly. Option

SINGLER SHOULD BE SET TRUE, if residuals are to be analyzed.

Note, however, although ALPH, DELT are used as label names, the coordinates

input for the spacecraft option may either be earth equatorial coordinates

(a, 6) or ecliptic (A, B). The constants _, ¢, etc. will then refer to that

plane. In either case, the equatorial spacecraft constants that are obtained

will enable a transfer from altitude/azlmuth to the earth equator (a, 6) or

ecliptic coordinates (B, A) to be made.

3) The least-square coefficients are then used to determine altltude/azimuth

residuals.

4) The residuals are then tested for correlations with three quantities

a) time

b) altitude

c) azimuth.

A cross-correlation check is then performed.

If the data is non-random then the data is fit by least-squares to either

5)

6)

a

a) power-series polynomial or a

b) fourier series

7) Upon option, correction formulae (orthogonal polynomials) with arguments

of spherical longltude/latiutde can be used to correct derived coordinates

to spherical longitude/latitude. The coefficients for these polynomials are

generated from the orthogonal surface fit program using data given by the

basic program.
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(B) Orbital Element Program

1) Observations of Planetary objects are input.

2) The Gauss method is used to solve for orbital elements or sets of orbital

elements.

3) If a single set of elements is desired then these can be used directly

in the LANS Basic Program.

4) If several sets of elements are obtained, these are used as data into

the power series least-squares program. The output of the least-squares is

then input to LANS Basic Program.

(C) A Suggested System Operation

In the previous sections of this report, we have discussed the most

general aspects of LANS. We have pointed out that LANS can be modified to

fit situations other than that of lunar surface navigation. In section 3,

_,,_ _,,=,I..... problem was outllned, but no specific mode of operation was

suggested. But a number of data exchange and interchanges between programs

and areas of study are necessary before LANS can be used to the fullest

advantage. At the end of section 3, the LANS programs were listed. Using

the notation of that llstlng, a general chart of data flow is shown in

figure 12. It can be seen that LANS has many interactions with observational

research as well as theory. Thus, although the necessary computer programs

have been developed specifically in this contract, much work on the necessary

parameters and constants is needed before celestial navigation can be done

accurately from the lunar surface (see Sec. 6 for estimates of present

uncertainties). Assuming the necessary data input has been obtained, on____e

possible use for the system will be described.
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Suppose a series of photographs have been taken from the lunar surface

including the horizon and some celestial objects. The local gravitatlonal

vertical is known and all of the angular measurements including that of the

horizon have been referred to this vertical. The zero azimuth direction is

arbitrary.

The approximate coordinates of the camera position are input to IANS___-

Basic Program along with the brighter planet and navigation star (heliocentric)

data over the required interval.

The selenocentric orbital elements of an orbiting instrument module are

also put in LANS Basic. The specific dates and times (U.T.) of the photo-

graphic exposures are put in the Julian date converter. The corresponding

dates and the Universal Time - Ephemeris Time correction are input. The

appropriate options are set and approximate - altitudes/azimuths and calendar

dates are obtained. These are compared to observations and identifications

made.

Another option in LANS Basic is set and, for increments of longitude

and latitude around the approximate coordinates, a data deck giving the

corrections to the center-of-flgure, spherical coordinates is obtained. This

deck is then put into the orthogonal fitting routine. The resulting deck

from the orthogonal fit is then put into the empirical data program.

Another option is set and selenocentric coordinates (center-of-mass)

at the appropriate times are obtained and input into the empiric_ data

program along with the altltude/azlmuths (referenced to the gravitational

zenith) obtained from observations.

The empirical data program is then set and the spherical apparent

(pseudo coordinates) iongltude/latltude are obtained by least-squares as
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well as the apparent azimuth of the north point. The altitude/azimuth

residuals are then analyzed by autocorrelation techniques. (Suppose a

periodic trend is found). The empirical Fourier coefficients obtained are

then used to correct the observations. The corrected observations are then

put back in and a new longitude and latitude are obtained. The residuals

are tested again. If they are random, another option is set and the apparent

camera position is corrected back to a spherical, center-of-figure system.

If desired, the entire process can be repeated using the horizon as

a reference. But suppose some of the exposures show instrument module images.

Using standard formulae, the altitudes and azimuths in the gravity system

can be transformed to a center-of-mass system in right ascension and

declination, (Pseudo-coordinates should be used for longitude and latitude.

Any coordinate (systematic) effects, including deflections of the vertical,

should be removed).

The right ascensions and declinations and other appropriate coordinates

are entered into the orbit calculation program. A set of orbital elements

are obtained. If these are significantly different from previous ones then

local variations of the vertical may be contributing.

Without going into detail, the satellite images or a series of exposures

of circumpolar stars may be used to derive deflections of the vertical. The

path of the moon's north celestial pole relative to earth 1950.0 equatorial

coordinates can be obtained by option from LANS Basic. The local "land"

slope can be obtained as well.

Other examples could be given. But until the instrumentation and

methods to be used are worked out more completely, these serve no useful

purpose in this report. In anticipation of a number of uses for LANS, a
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number of addltlonal options were Included, but not mentioned above.

The program listings should be consulted for further details.
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Sec. 5 ESTIMATES OF LOCAL DEFLECTIONS OF VERTICAL ON THE MOON

One source of error in lunar surface navigation is the stochastic

local deflection of the vertlcal. We have made no attempt to derive

rigorous theoretical formulae for this, since in practice it must be de-

termined emplrlcally. However, we may put limits on the expected contri-

bution using some slmplified models.

Moulton (1914, p. 118) has stated that the deflectlon of the vertlcal

I due to a hemispheric "bump" is

tan _, = (1/2_o)r . 1/2 olro 3 ,,,,_ _ .....(1)

_o 2R--_ lr o2R

where R is the radius of the moon, r is the height of the "bump", o I is

the mean density of the "bump", 02 is the mean density of the sphere. For

a "hole" -o I = 02 .

It can be shown that the deflection of a buried spherlcal mass is

d IO3(02 .. (2)tan A - ro3(°2 - ol) - 01) x ...

(x 2 + d2)3/2/ x 2+ d 2 Ol R+
/

where d is the depth of the mass ro the radius of the radius of the mass,

x is the distance _ the surface from the observer of the mass, oI is

the mean lunar density and 02 is the mean density of the buried mass.

For a mass near the surface d - ro and for an observer near the edge

of the mass with rO < R, x = rO

(02 - Ol) r o 02 r o

tan _ = 2.8 _1 -_x 30l --_ ..... (3)
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For a mountain approximated by a 45 ° cone,

1/2 so

tan x _ 114 °l-_h

a2R

the mass is reduced by

..... (4)

For o I = o 2

tan X _ 0.25 (h/R) ..... (5)

The limits to a conical mountain of any slope a can be found by finding the

deflections for an inscribed hemisphere and a circumscribed hemisphere.

For a mountain of height h, slope a, and an observer x distance from the

I

I
I

I

mountain base, it can be shown that

or at x = 0

L h
__ ...(7)

For small slopes or for craters approximated by shallow inverted cones,

Consider the following crater model. A central peak Xo from the outer base

with slope a3 the rampart of the crater walls are a distance XI from the

central peak. The inner crater walls have a slope of a2 and the outer walls

slope aI. X2 is distance from the crater wall-central peak intersection to

the central peak. Then

.....(9)



For small and equal slopes

Yo "
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.... (lO)

I For "average" craters _ _ 0.2, x 2 = 0.1 Xo, x 1 = 0.9 x o

o 2o_zR '
(ii)

We do not claim that these equations can be used to calculate actual

deflections, but they can be used to evaluate limits of accuracy. Four cases

have been considered and are enumerated in the following tables.

I

I

I



a)

b)

c)

d)
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For small conical craters or hills (outer slope = 0.2) at edge

Height or depth Ixl Ixl

500 ft. 10" 2"
lO00 ft. 20" 4"

2000 ft. 40" 8"
4000 ft. 80" 16"

i ml. 102" 20"

2 ml. 204" 40"

For large craters with central peaks and outer slope 0.2

radius max Ixl min Ixl

1 rot. lO0" 4"
2 mt. 200" 8"
3 rot. 300" 12"
4 mt. 400" 16"

5 mi. 500" 20"
I0 mi. I000" 40"
30 mi. 3000" 120"

50 mi. 5000" 200"
I00 mi. i0000" 400"

For buried spherical iron mass Just touching surface and observations

a radius away from the surface tangent

radius

I0 ft. 2"

50 ft. 9"

I00 ft. 18"

500 ft. 90"
I000 ft. 180"

1 mi. 900"

For fairly steep mountain _ 45 °

radius max J_l mln

500 ft. I0" 7"

I000 ft. 20" 14"

I mi. 102" 70"

2 ml. 200" 140"

3 mi. 300" 210"

4 mi. 400" 280"
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Sec. 6 ACCUBACY OF EPHEMERIS DATA FOR THE LUNAR

SURFACE AS GENERATED USING LANS

In the previous section we have attempted to find by several approxi-

mations, the lower limit to the stochastic component of the deflectlon of

the vertical. The situations considered are oversimplified and experimental

results must be obtained before an estimate of how large an uncertainty is

due to random variations of the vertlcal. On the basis of the numbers derived

in Section 5, estimates of this error will be mentioned later in this section.

First, however, some estimates of other contributing uncertainties must be

made.

Because of the large number of transformations involved in LANS it has

been virtually impossible to do rigorous error analyses of major parts of

the system. Many constants employed are not "universal" and are poorly

known. Hence_ a real test for this system is to perform accurate obser-

vations from the lunar surface and compare them with the computations. How-

ever, since no rigorous error analysis can be performed, the test program

results obtained by variations of sensitive quantities must be used. It

should be stressed that the shortcomings are numerlcal only. No approxi-

mations were made that would make LANS system or process limited, at least,

for operations that involve non-relatlvistlc mechanics. We have concluded

that for the Basic Program, LANS is data-llmlted. On the basis of the data

available at the completion of this flnal report and expected future refine-

ments, we have attempted to make estimates of various sources of error.

The contributions listed are uncertainties of topocentrlc altltudes/azlmuths

referenced to a partlcular zenith and center.
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a) Positions at center-of-mass of moon.

Best Heliocentric Data

Average Orbital Elements

Prellmlnary Orbit

± 0':005
± o':1o
+lOYO

"Best" Operational Estimate + 0?05

b) Center-or-Mass to Center-of-Figure (Coudas, 1966)

Maximum:

Estimated Error (current)

Estimated Error (Post-orblter)

Estimated Error (Post-Apollo)

+ 5'

+ 30"

+ 0"i

"Best" Operational Estimate + 40"

Note: The correction here is not a parallax error, but is a systematic

deflection of the vertical.

c) Libratlon Constants (Eckhardt, 1965)

Maximum Error Due to B, f Uncertainty _ 30"

Estimated Error (Post-orblter)

Estimated Error (Post-Apollo)

+ 1'.'0
+ 0"I

"Best" Operational Estimate + I0"

d) Surface Shape ("geoid")(Coudas, 1966, Bray and Goudas, 1966).

Maximum (Trlaxlal elllpsold) _ 50"

Maximum (8th order Expansion) _ 30' (I)

Maximum (only 4th order coefficients)
+ 2'a. Polar Regions

b. Equatorial Regions _ 30"

"Best" Operational Estimate + 30"

Note: The estimates in (d) do not Include the difference between

geographic spherical coordinates and center-of-mass spherical coordinates

as this is already included in (b).
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e) Gravity Field (Relative to center-of-mass)(Goudas, 1966 - Homogeneous

body).

Maximum (Triaxlal Ellipsoid)

Maximum (8th order)

Maximum (4th order)

a. Polar Regions

b. Equatorial Regions

+ 20"

+ 10' (I)
+ 30"

+ 30"

+ 10"

"Best" Operational Estimate

"Best" Operational (Post-orblter)

+ 50"

+ 5"

f) Local Stochastic Vertical Deflections

Possible Uncertainty

b.

a. Mountainous Areas + I00"

b. Plalns + 20"

c. Plains (surface undulatlons) + 100"

"Best" Operational Estimate + 50"

g) Spherical Topocentrlc System (geotd or surface corrections are ignored)

Gravity Reference (Estimate)

Surface Reference (Estimate)

+ i'
4' Systematic

The total r.m.s, uncertainty for center-of-figure spherical coordinate

references can be compared with center-of-mass spherical coordinate references.

Estimated Operational,Error s .

Source of
Error

Gravity and
Center-of-Mass

(a) +_0?05
(b) ---
(c) + i0"
(d) ---

(e) + 50"

(f) + 50"

Total r.m.s._ + 60"

(,.P.roJected)

Surface (perfect horizon)

and Center-of-Figur e

(a) +_0?05
(b) + 40"
(c) + 10"
(d) + 90"
(e) ---
(f) + 1oo"
(g) % _ 130"

r.m.s. + I' arc r.m.s. + 2' arc
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If the general deflections of the vertical are ignored, the errors are

systematic &swell as stochastic.

8_ +_I' arc 8@ +_4' arc
r.m.s. +I' arc r.m.s. +2' arc

Finally, even if the geoid or gravity field are considered, current probable

errors on the known constants for expansions to the fourth order

r.m.s. + 2* r.m.s. + 8'

These represent the uncertainties of reference to a spherical system at

the respective coordinate origins.

Because of the smaller lunar radius, one nautlcal mile on the moon

has a spherical arc of 4' not 1' as on the earth. For navigational pur-

poses, the current set of constants are probably suitable, but not so for

geodesy. But outlook is not as gloomy as it might seem, especlally in

view of research now in progress or being planned. As expected a gravi-

tational reference system is superior to a surface system. This is

fortunate for celestial mechanical purposes, but is a disadvantage for

geologlcal or geodetic uses. By the time, LANS is to be used extensively,

it is probable that the situation will be much better.

A hybrld system whlchwill probably be the most useful in practice

employs a gravitational zenith as a reference llne, but has its origin

at the center-of-flgure. Such a system would not use a horizon reference

and thus eliminate the errors of the geold. This system would suffer,

however, if the position of the center-of-flgure cannot be determined

accurately.
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Estimated Errors

Gravitation Zenlthj Center-of-Figure

(Local Deflectlons of Vertlcal are ignored)

Maximum (Current)

+5' of arc

Post-Orbiter

+--30"of arc (?)

Post-Apollo

+_IO" of arc

Again it must be stressed that the figures given are estimates. It is

important that the actual errors be evaluated as soon as possible, by lunar

surface observations.

For system tests, we have chosen constants whlch we believe to be the

best available, but the ALGOL programming flexlbillty permits a change when

other constants become available. As an example of the differences which can

result for divergent choices of the B, y parameters for the moments of inertia,

the following table of positions of Mars as seen in selenocentrlc coordinates

is given below.

Y = 0.00010

AR.A. - 22176

ADec = +32_2

AS.T. = -15.8 sec

B =0.00060

AR.A. = +20.5 sec

ADec = -304.5 sec

AS.T. = +0.9 sec

MARS POSITIONS

B ffi0.00063

y = 0.00022

(near tabular singularity)

AR.A. - +41_8

ADec = - 5?8

AS.T. = +0.6 sec

y = 0.00020

B = 0.00066

AR.A. =-22.6 sec

AR.A. -+312.2 sec

AR.A. = -0.9 sec

. , ,

B IS THE EQUATORIAL MOMENT PARAMETER

y IS THE POLAR MOMENT PARAMETER

Y = 0.00032

AR.A. = -267?5
ADec = - 3371

AS.T. = +16.5 sec

B = 0.00063

AR.A. =

AR.A. =

AS.T. =

0.0 sec

0.0 sec

0.0 sec
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LANS has been programmed in Extended ALGOL 60. The basic LANS program

has been diagramed in Appendix I. However, it is not necessary to know the

details of these programs in order to use them, provided details are availa-

ble of the appropriate data formats. In this section, these details are

presented for the three main programs. Input instructions for the auxiliary

programs are also given.

The files for the empirical data reduction program have all been declared

internally, but for the basic program and the orbit program, no files were

declared internally in original versions, but calls and formats for card

reader (CR), card punch (CPH), and llne printer (LP) have been left in. These

formats, especially for the basic program, are not elaborate in anticipation

of changes to magnetic tape or disk for I/0 operations. Headings have been

omitted for a number of options of output, but the data obtained are fully

described in this section so no confusion should result.

A. Basic LANS Program

The following is a description of data input required for operation

of the basic LANS program in its present form. It be noted that some of the

Boolean options are mutually exclusive. If any one of these is set true all

of the others must be set false. These are listed below. If not already

declared, files CR, CTH, and LP must be declared.

SUNNY, POLAR, EARTHY, NAGAV.

CHECK, EPHEM, LONLAT.

Some options can be used on_qn_ if other options are set true, these are:

PUNCHOPT - LONILAT

LONILAT - LONLAT
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ORBCO_'_.
ORBFL

MOONEL ,_.
Or

PLANEL

DIRECTO .'STATION

MEANCAT - STAR

RISESPHERE - LONLAT

HELLO - EARTHY

BARBY - READINOPT

All other options either are ignored, if not needed, or can be used

independently. All Boolean options are L6 formats, right adjusted. The

data cards required are:

i) L6 - Option HOMOG, one card, if true when GENERAL is true will

compute gravity field coefficients from geoid coefficients.

2) L6 - Option TRANITE, one card, if true when GENERAL is true will

generate gravity field using center-of-mass longitude, latitude, and radius

to compute gravity parameters rather than using center-of-figure coordinates.

3) L6 - Option SUNNY, if true, solar coordinates (an appropriate field

of zeros) must be input later as a planet. Then, if SUNNY, zero longitude

sidereal time and zero longitude solar time are listed as a function of date.

(One card).

4) L6 - Option DATEFIX, if true, calendar conversion of Julian date

is written. Otherwise numerical Julian date is printed. (one card).

5) L6 - Option INVERT, one card, if true, the heliocentric coordinates

of the station must be used instead of the statlonocentric coordinates of

the SUN.

6) L6 - Option PUNCHOPT, one card, maybe true only if LONILAT IS TRUE.

If true, punches cards for use in orthogonal polynomial fit program. If false,

the actual pseudo-coordlnates are printed out in the order - sphere - gravity-

surface.
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7) L6 - Option READINOPT, one card, if true, allows a large set of

constants to be read in directly later in the data deck. (see comment

(21) for llst of constants.)

8) L6 - Option BTETCON, one card, if true, it must be followed by a

card giving the Ephemeris Time minus Universal Time correction in seconds

free-fleld format). This option will Interpolate tabulated quantities for

difference between U.T. and E.T. If false, E.T. is used. If true, U.T.

is used.

9) L6 - Option POLAR, one card, if true, the 1950.0 equatorlal (earth)

coordinates of the lunar north pole are obtained. Geold - gravity constants

are omitted, as are planet-sun-moon positions if this option is used. The

llbration constants, however, must be read in as usual followed by a card

in free-fleld format giving the starting Julian date and the number of days

for which pole positions are desired after that date (see items after (20)).

10) L6 - Option EARTHY, one card, if true the program runs as usual

except geocentric coordinates are obtained. Positions are corrected for

everything but nutatlon. READINOPT should be set; otherwise, the constants

used for computation of the zenith will be those for the moon. General

should not be set true unless the geold-gravlty constants for the earth

are input.

11) L6 - Option BARBY, one card, if true, precession constants may be read

into the program directly.

12) L6 - Option FOLLOWUP, one card, if true, then a new set of options

and data follows and the program will repeat until FOLLOWUP is false.

13) L6 - Option NAGAV, one card, if true, the local sldereal time, and

object-hour angle, will be printed out along with the LONGITUDE (ANGULAR AND

TIME UNITS) and LATITUDE. LONLAT must be true. (see (15)).



-65-

must also be true; if true and PUNCHOPT false the spherical and pseudo-

longitude and latitudes (gravity and geoid) are printed out; if true and

PUNCHOPT true a set of fou__._rdata decks are punched. The order of decks

are:

a) LATITUDE geoid - LATITUDE sphere = fl (LAT sphere, LONG sphere)

b) LONGITUDE geoid - LONGITUDE sphere - f2 (LAT sphere, LONG sphere)

c) LATITUDE gravity - LATITUDE sphere = f3 (LAT sphere, LONG sphere)

d) LONGITUDE gravity - LONGITUDE sphere = f4 (LAT sphere, LONG sphere).

Each of these decks are to be run through the orthogonal fit program to

obtain four coefficient sets which in turn are used by the empirical data

program. In addition to the data decks, the following information is

printed out.

a) spherical longitude and latitude

b) total deflection of the vertical

c) normalized values of local center-of-figure distance and gravity

magnitude. If the number of latitudes, n and number of longitudes, m for

which the four data decks are desired are such that n x m > 1023, then

Pt_CHOPT is automatically set false and the pseudo-coordinates are printed

OUt.

15) 2FIO.I, 215, 7L6, one card giving the following:

a) Julian Date of First data point of first data set (FIRST).

b) Julian Date of last data point of first data set (LAST).

c) Number of Tabulations per day for the desired output (PERDAY).

Note: (FIRST - LAST) x PERDAY = All must be less than 80 to prevent array

overflow.

d) Number of objects, both planetary and stellar for which data is

to be generated. (ENDRUN).
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e) Boolean DECIS - if true geocentric lunar coorldnates given

in earth radii will be converted at astronomical units.

f) Boolean SPHERE - if true, topocentrlc corrections will be computed

for spherically symmetric geold and gravity fields. Output order is:

i

I

I

sphere (center-of-flgure) - sphere (center-of-mass) - sphere (center-of-flgure).

g) Boolean ELLIPSE - if true, topocentrlc corrections will be computed

assuming trlaxlal geold and gravity fleld. Output order is: sphere (center-

of-flgure) - gravity (center-of-mass) - geold (center-of-flgure).

h) Boolean GENERAL - fl true, topocentrlc corrections will be computed

using spherical harmonic expansions of the geoid and gravity field. OUTPUT

order is sphere-gravlty-geoid.

i) Boolean CHECK - if true, ecliptic and nodal coordinates are read out.

j) Boolean EPHEM- if true, a standard selenocentrlc ephemeris will be

generated including coordlantes, distances (for planets) and radial velocities

as a function of time.

b_ Boolean LONLAT If true, (with LONIT_AT FALSE) a topocentrlc eohemerls

in altitude/azlmuth referenced to a spherical, gravity, and geold respectively,

is printed.

16) L6 - Option HELIO, one card, if true, one set of primary coordinate

data can be omitted from input (see 23).

17) "Free-fleld", two integers (TERMA, TERMB) which indicate, respectlvely,

the order of the geoid and gravity expansions for which coefficients will be

available and read in if GENERAL is true.

18) "Free-fleld" - Two integers (TERMC, TERMD) which indicate number of terms

to be truncated from the series expansion in the calculation of the geoid

and gravity field, In case GENERAL is true.
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19) "Free-fleld" - six Real Numbers - "for topocentrlc corrections"

al LONNY - smallest longitude value for tables

b) LATTY - smallest latitude value for tables

c) BIG - longitude interval for tables > 0

d) AIG - latitude interval for tables > 0

e) BICG - largest longitude value for tables

f) AICG - largest latitude value for tables.

If [(LONNY - BIGG)/BIG x (LATT¥-AICG)/AIG]> 1024 PUNCHOPT is set

false and "LONGITUDE - LATITUDE CRIDTOO LARGE FOR ARRAY" is printed. If only

one longitude - latitude position is to be used then set LONNY = AIGG =

longitude and LATTY = BIGG = latitude and AIC = BIG = 1.0. (one card)

20) L6 - Option INTRER and integer (NNI), one card, if true and NNT

> 0 then NNI cards must follow giving speclflc Julian dates for which data

in the range between FIRST and LAST is desired. The format for these cards,

if included, is F12.6.

The items (1) to (20) must be present In--data deck, even if they

are no___ttused for a particular option. The next items are llsted in proper

order, but may or may not be used for a particular option. The next items

are listed in proper order, but may or may not be present according to the

options set in (i) - (201.

211 If READINOPT then the following cards must come after (20).

a) Free-field, one card, (WOMECA) giving the rotation rate in radians

per day.

b) Free-fleld, one card, (CENX, CENY, CENZ) giving the x, y, and z

displacements of the center-of-flgure relative to the center-of-mass.

c) Free-fleld, one card, planet (earth) radii to astronomlcal units

conversion factor. (ERTOAU).
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d) Free-fleld, one card, satellite (moon) radii to astronomical units

conversion factor. (LR to AU).

e) Free-fleld, one card, mean radius (RZERO) and height above mean

radius (HZERO) for topocentric corrections.

f) Free-field, one card, sine (SIE) and cosine (COE) of the obliquity

of the ecllptic for epoch other than 1950.0 may be input here if desired,

These are used in precession and libration calculations.

g) Free-field, one card, seven numbers (AO, BO, CO, CAPA, CAPB, CAPC,

M) giving the X, Y, Z, trlaxlal semi-major axes, the X, Y, Z moments of inertia,

and the mass respectively. These are used for the ELLIPSE option.

22) If GENERAL then the followlng cards must come after either (20) or (21).

a) Cards with TERMA coefficients in 6E10.2 format giving the spherical

eo_expanslon.

b) If no___/_tHOMOG,then cards with TERMB coefficients follow in 6E10.2

format. If TRANITE these coefficients must be for an expansion in center-

of-mass longitudes/ latitudes, instead of center-of-figure longltudes/latitudes.

If LONILAT, (22) is the last data to be included for input.

23) Primary Data Sets - Three groups, unless HELIO is true, in which case

set (c) below is omitted. Each group has a set of cards, the first of which

has, free-field format, the order of Interpolation (N), the number of days

time argument of the data (DAYS), the Julian date of the first data point

(FIRS) and the Julian date of the last data point (LAS). Be sure that

(LAS - FIRS)/ DATE <80. The remaining cards have, in free-field format,

X, Y, Z coordinates, respectlvely, for each day between (LAS-FIRS) at inter-

vals of DAYS data. The three sets should have X, Y, Z coordinates read in the

following order (INPUT [_, II, J])
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a) Planetocentric (geocentric) coordinates of the Sun {If=0)"

b) Heliocentric coordinates of center-of-mass of solar system (II=l)

c) Planetocentric (geocentric) coordinates of moon (II=2).

231 L6 - Option STATION, one card, if true, it must be followed by the

following set of cards. If it is false then (25) follows immediately

after (24).

If STATION THEN

a) 4L6, one card, four Boolean Options

i) ORBCOMP - if true, orbital elements will be used to generate station

positions.

2) MOONEL - if true, orbital elements referenced to the lunar center-

of-mass may be used. It is assumed that these elements use a Kepler's constant

such that the orbital seml-major axes are in lunar radii units.

3) PLANEL - if true, orbital elements referenced to a planet center-

of-mass may be used, provided the elements give distances in planet radii

not astronomical units.

41 DIRECTO - if true, X, Y, Z heliocentric coordinates can be input

directly without disturbing the primary data set.

b) L6 - Option READELEM, one card, if true only a single set of orbital

elements will be used. If false, a set of coefficients giving the time-

dependent orbital elements must be put in.

c) If ORBCOMP then a set of cards follow (b):

A) If no___/.tREADELEM then coefficients are input.

one card - F12.4 - Julian date of tlme-epoch (El0])

one card - F12.8 - obliquity of ecliptic in degrees. (ECL).

_ix cards - 3R12.8 - on each card the constant term, first and

second power coefficients of on_._.eeorbltalelement. (ACOFF, BCOFF,

CCOFF).
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B)

The order is a, e, i, _, _l, T.

If READELEM then IN.STEAD of (A) use:

one card - 6F12.8 - giving orbital elements in order a, e, i, w,9,
T in degrees. (E[I]).

one card - F12.8 - ecliptic obliquity in degrees. (ECL).

It should be noted that the appropriate cards for (k) or (B) can be obtained

I

I

I

directly from the orbit calculation program (B) or from the orbit calculation

program as processed by the power-series least-squares program (A).

d) If HOONSL OR PIANEL, one card, 712.8, giving the appropriate Kepler

constant.

e) If DIRECTO, items (c) and (d) are omitted. Instead, a set of (LAST-

FIRST) x PERDAY (= ALL) cards must be put in. On each card in 3R12.9, the

X, ¥, Z 1950.0 coordinates are entered.

25) In 6E12.3 format, a series of cards. The first field gives the mean

axial inclination (INC), the remaining fields give the libratton - nutatton

coefficients. A deck in the appropriate format and order may be obtalued dd

by using the coefficient B, I interpolation program. The order of

the first forty-five coefficients is as follows.

(COEFF[J,I])

e) 10 T coefficients

2 (F - D)
(L')
(L - L' - D)
(L - 2D)
(L)
2 (L - L' - D)
(2(L - D) - L')
2 (L - F)
2 (L - D)
5 blank fields

(J - I),

(r - l)

(_ - Io)
(I - II to I - 15)
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b)

c)

15 - Ia coefficients (J- 2)
2 (F-D) (I= l)
2F
(L - 2F)
(L - 20)
L
2L (Y- 6)

9 blank fleld (I - 7 to I - 15)

15 0 coefficients (J- 3)
2 (F - D) I - 1
2F
(L - 2e)
(L - 2D)
L
(L- F) X- 6

9 blank fields (I - 7 to I - 15)

If option POLAR is true then items (22), (23), and (24) must be omitted.

Then (25) is followed by a single card, which in free-fleld format, the

Julian date for which the computations of the pole position are to start

and the number of days for whlch positions are desired thereafter. If

POLAR is true, this card is the last item in the deck and any of the follow-

!rig !tem_ must be omitted.

26) Secondary Data Sets - card sets, ENDRUN in number, wlth following

characteristics.

a) 2L6, Option's STAR, ORBEL one card.

b) If STAR is false, one card. L6, F12.2, Option RISESPHERE, integer

giving the unlt distance seuLi-dlameter, in seconds of arc. RISE-

SPHERE AND LONLAT are true, then rise, set, and transit times are computed.

c) If STAR is false, ORBEL is false, the cards that follow refer to

objects withln the solar system, but give X, Y, Z coordinates directly. If

ORBEL is true, it serves the same function as STATION in (24). The cards

that follow, if ORBEL is true, are identical in format and label to those

used in (24, a-e) and will not be repeated here.
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by:

If STAR is false and ORBEL is false, cards (a) and (b) are followed

d) one card, 2A6, 215, 2F15.3, the first two fields contain the object

name, the third field is an integer giving the order of interpolation (N),

the number of days interval at which the X, Y, A data is available, the last

two fields contain the Julian dates of the first and last data points which

follow. (FIRS, LAS).

e) X, Y, Z date, in number and format exactly as for set (a) in (23)

with free-field format but with only single array INPUT [I, O, J] being used.

There are n__osets corresponding to (b) and (c) in (231 in this part of the

deck.

If STAR is tuft, ORBEL is ignored, items (b), (c), (d), (e) are replaced

by (b') and (c*) given below.

(b') 2A6, 213, F7.3, 213, F6.2, 3F7.3, one card, the first two fields

contain the star name, the next three fields contain the star 1950.0 right

ascension in hours, minutes, and seconds, the next three fields contain the

1950.0 declination in degrees, minutes and seconds, the next field the

stellar parallax in seconds of arc, the next field contains the stellar

proper motion at 1950.0 in seconds of time of right ascension, the last field

contains the declination component of the stellar proper motion in seconds

of arc. (STARbTD[O], HRS, MINT, SECT, DEC, MINA, SECA, PIE, _A, FRTD.):

(c') 2L6 - Options RISESPHERE and MEANCAT. If RISESPHERE and LONLAT

are true, the time of rise, set, and transit of the star are computed.

If FNANCAT is true, the 1950.0 quantities entered in (b') can be mean cata-

logue places, not "true" mean places.

on mean and apparent places of stars.)

(see Explanatory Supplemen _ Chapter 4

° .



I

I

I
I

I

I

I
I

I
I

I
I

I

I

I

I

-73-

If FOLLO_-UP is true an entirely new deck must follow. The next deck

must be prepared according to the It_ns (23) through (26) above, except (25)

is omitted in the followup decks. Each "followup" begins with a single

card, similar to (20), on which the Julian Day of the first data point and

the Julian Date of the last data point in eac__hhfollowup deck is put in 2FIO.I

format. Then in 216, the number of desired tabulations per day and the number

of objects are printed. The tlems (23), (24), (26) are entered as for the

first deck.

If FOLLOWUP is false, the data deck is complete.

It has not been possible in the development period to test al___Iof the

options under al._idata conditions. All options have been tested and barring

typographlcal punch errors, or incorrect data handling they should operate

normally. For a number of constructs, it may be desirable to reformulate

some operations. Several opt_Ions are necessarily slow. These should be

avoided, if not absolutely essential. The worst are DATEFIX, UTETCON, and

RISESPHERE. Option UTETCON is particularly time consuming since double

interpolations are involved.

At the present time, the astronomlcal input data (X, Y, Z coordinates)

is accurate to 10-8 astronomical units. The normal functions SIN(X), COS(X),

SQRT (X), etc., are also accurate (for single precision) to about 10 -8. If

angular arguments to an accuracy of_+O_001 arc or smaller become possible

or are desirable, double precisi0n function procedures are reconnuended.
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There are basically two parts to the LUNAR program. One part calculates

longitude and latitude from the moon's surface, and the other part calculates

the equatorial epoch, ascending node _, and inclination E for: navigation from

a space craft.

The input data depends completely on which part of the program will be

used. An initial input card containing a free field one or zero determines

the part to be used.

Part One - Navigation on the Luaar Surface

i. Initial option card - i, followed by either a zero or one in free-fleld

format. If zero then randomness of residuals is not tested. The second figure

must be one, if observations of_obJect are input. If the observer is

spln-stabillzed, the figure must be zero and coordinates of M different objects

used. This sets option SINGLER.

2. Second option card determines whether data for a sphere, a geoid, or for a

gravity fleld will be used in the orthogonal calculatlons for longitude and

latitude. The card must contain, in free-fleld format, three integers which

are either zero or one, where one Lndicates this option is to be used . The

first number is for a sphere, second for a geold, and third for gravity.

If space craft (see later) is true, the first number should be one and the

others zero.

3. Actual observational data - in chronological order

This data must contain all observed information for the calculatlon.

Each observation must be on two cards, and the set of data must be followed

by a sentineal card containing 80 asterisks.
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Data for each observation must have the following form, where every-

thing is free-fleld format:

Card 1 - Azimuth degrees, azimuth minutes, azimuth seconds, altitude

degrees, altitude minutes, altitude seconds.

Card 2 - Time in Julian days, alpha hours, alpha minutes, alpha seconds,

delta degree_, delta minutes, delta seconds, zero lunar sidereal time in hours,

minutes, seconds. If spacecraft then alpha/delta can be ecllptlc coordinates

(1950.0) (A,B) or equatorial coordinates 1950.0 (a,8). If not spacecraft,

alpha/delta must be equatorlal coordinates 1950.0 (a,6). There must be at least

three observations and there cannot be more than 500 observations.

4. Sentlnal card described above.

5. Coefficient Deck for orthogonal polynomlal calculatlon of latltude and

longitude. This deck must be in the format punched by Burroughs program PTS-

062. There will be four parts to the deck - from 4 distinct runs of PTS-062.

They must be arranged in the followlng order: Geold - latltude coefficients,

Geold - longitude coefficients, Gravity - latltude coefficients, Gravity -

longitude coefficients.

6. Tolerance to be used in random test. This must be a number in free-

fleld format, and should be less than three sigma estimated instrument error

for the original observations, but larger than the estimated variance of

the Initlal least-squares reduction.

7. Order of polynomial fit in random test.

This must be a positive integer in free-fleld format. The number must

be less than ten.

8. Order of Fourier fit in random test.

This must be a positive integer in free field format. The number must

be less than ten.
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Part Two - Spacecraft navigation option.

I. Initial option card = O, followed by either a zero or one in free-fleld

format. If zero then randomness of residuals is not tested. See note on

first data card described in Part I. This sets option SINGLER.

2. Second option card determines whether the spacecraft is rotating or

not, and whether one object is used as the observation point to determine

alpha and delta. This card must contain two numbers in free-fleld format. The

numbers must be either zero or one, where one indicates that this option is the

one to be used. The first number indicates if rotation is assumed. (OPTION

ROTATE) The second indicates whether one or more objects are used for alpha,

delta observations. (OPTION HOLDER)

3. Actual observational data - Part i - in chronological order.

This data must contain azimuth and altitude observations. The data must

be in free-field format, with one observation per card. A sentlnal card must

follow the data and must contain 80 asterisks. The data on each card is

assumed to be:

Azimuth in degrees, azimuth minutes, azimuth seconds, altitude degrees,

altitude minutes, altitude seconds, time in Julian days.

There must be at least three observations, but no more than 500.

4. Sentinal card described above.

5. Either an omega value to be read in or a set of values to be used for

a randomness test depending on the rotate option read in previously.

If ROTATE is true, a tolerance value, polynomial order value, and a

Fourier order value on three separate cards must be read in. See the des-

cription for input data 5, 6, and 7 under the Lunar Surface option.

If ROTATE is false, a card containing a number which will be R in the

calculations must be input. The number must be in free-fleld format.
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6. Either a single card containing alpha, delta information, or a complete

set of alpha, delta information depending on the option set on the Second

option card.

If only one observation is made for alpha and delta, the card must

contain in free-fleld format, the following information:

Alpha in hours, alpha minutes, alpha seconds, delta degrees, delta

minutes, delta seconds.

If several observations are made, a card must be input for each obser-

vation with a sentinal card as described above, following the set of obser-

vations. This type of data card must contain, in free-fleld format, the

following information in chronological order:

Time in Julian days, alpha hours, alpha minutes, alpha seconds, delta

degrees, delta minutes, delta seconds. At least three, but no more than

500 values should be input.

7. Tolerance value for random test- see part 5 in Lunar section.

8. Polynomial order value for random test; see part 6 in Lunar section.

9. Fourier order value for random test; see part 7 in Lunar section.

The LANS empirical data progrmn has as its most important procedure a

modified statistical program. It is called LEASTSQ. The description is a

summary of the uses and needs of LEASTSQ, a procedure which performs least-

squares and other analyses of statistical data. The procedure LEASTSQ is

a modification of the Westinghouse Regression program.

(Research Report 64-IC4-362-RI).

The purpose of the modifications was to make the program a procedure

and yet allow co_nnunlcation with the procedure.

Co_nunlcatlon is accomplished by declaring certain variables globally,

changing the card reader file to a desk file, and saving "answers" in three

globally declared arrays.
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The procedure is specialized such that no extra "header" cards are

needed, therefore el_nating the tzansformation and polynomial options

available in the program, and also _rlthout the plotting facilities.

The following variables must be declared globally, and set appropriately

before entering LEASTSQ:

INTERGER OPT i, OPT 2, OPT 3, OPT4, OPT 5, OPT 6, OPT 7, OPT 8, OPT 9, OPT I0,

OPT 11, OPT, 12, OPT 13, REPSS, NOLAG, M, N, Q, B; ARRAY ANSI_ ANS2 [0-30],

ANS3 [0:500]; FILE READER DISK SERIAL [20:500] (2, 30);

These declarations have the following meanings and implications:

M = number of observations

N = number of independent variables

Q = N + number of dependent variables

H = total number of input items per observation

READER is a file containing the observations. These are to be read unedited

("*" format) on N cards. On each card, in order, are the following:

I) dependent variable

2) independent variable

3) " "

4) " "

The OPT i - OPR 13, plus REPSS and NOLAG are options controlling the flow

through the pcogram. The most basic llnear regression assumes all of these

= O; to "set" an option set It equal to i.

Some options cannot be used because of the modifications.

Some that can be used are:

OPT 8 for printout of correlation matrix

OPT II for printout of correlation coefficient information

Others may be possible.



The ANSI, ANS2 and ANS3 arrays contain the only "answers" after the

LEASTSQ analysis, excepting whaever printed information has been written.

ANSI contains the regression coefficients such that

ANSI [I] has the coefficient for the first

independent variable, ANSI [2] for the second,
and so on.

ANS2 contains the corresponding standard deviations for each regression

coefficient.

ANS3 contains the Y residuals for each observation.

The current limits, which can be controlled by a change in the global

declarations are:

i. No more than 30 independent variables are allowed change by

altering upper bound of ANSI and ANS2.

2. H cannot exceed 30. Change this by increasing the record length

in the READER file declaration, as well as ANSI and ANS2 conse-

quently.

3. No more than 500 observations possible. Change by increasing

the upper bound of ANS3.

The input is assumed to be arranged in READER such that m observations

are read in, one record at a time.

Note_ If any changes are made in the LUNAR program, which uses LEASTSQ,

care must be taken to preserve the global variables m, n, q and h as being

for the use of the LEASTSQ procedure.

C. GAUSS ORBIT PROGRAM

The program uses the Gauss method as outlined by Dubyagp (1961)_ A

number of options are available. Orbital elements may be determined using
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the extreme observations (in time) or using all the available observations

taken three at a time. Only observations from one station can be used.

Cards required are the following:

File declarations required are CR = card reader, CPH = card punch,

LP = line printer.

11 One card, free-field, number of observations (N>31.

21 One card, L6, option SQUARE, if true orbital elements (time-independent)

are punched on cards in the correct format for input to LANS. If false, card

output must be used as input for the polynomial least-square.

3) One card, L6, option RESIDCAL, if true the right ascension/declination

residuals are calculated and printed out, followed by the observation number,

4) One card, L6, option XERO, if true, the rectangular elements Ax, Ay,

Az, Bx, By, Bz are put out instead of the normal a, e, w, i, _ elements.

5) One card, L6, option GROUNDER, if true, the topocentric coordinates of

the ground station are used instead of solar positions. This makes it possi-

ble to solve for satellite orbital elements, provided the appropriate Kepler

constant has been input.

6) One card, L6, option PLANEL, if true, a different Kepler constant can

be used and the positions of one satellite may be used to determine the

orbit of another. PLANEL should be true, if GROUNDER is true.

7) One card, 3L6, options INVERT, SPACETAND LONGEST,

a) INVERT - if true, X. Y, Z coordinates of the observed object must

be input, instead of the normal X, Y, Z solar coordinates. The orbital

elements obtained are those of the station.

b) SPACET - if true spacecraft coordinate analoss of R.A. (a) and

Dec. (8) can be put in.
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c) LONGEST- (must be true if SQUARE is true) if orbital elements

found are those using the two extreme (in time) observations and one near

the mean interval.

8) If SPACET is true, one card, free-fleld, is next with the following

information:

a) rotation rate in radlans/day

b) longitude of descending node

c) obliquity of ecliptic (inclination)

d) Julian date epoch of (a), (b), (c).

(w w)

(wwv)

(FFF)

(TZERO)

9) One card, free-fleld, giving the Julian date (arbitrary) of a time

near the mid-point of the set of observations. (TE)

I0) Obliquity of ecliptic (for earth) for the epoch to which the observations

refer, one card, free-field (EE)

ii) If PIANEL is true, then on one card, free-field, the seml-major axis

(in astronomical units) which changes the solar Kepler constant to that for

the particular planet is input, (Kplanet = Ksun a 3/2) (AAAA).

12) If no____tSPACET, one card, free-fleld wlth the topocentrlc qualities as

defined in the American Ephemeris and Nautical Alamanac, but in special units.

a) the longitude of thestatlon expressed in fractions of a day

15 ° = Ihr, 24hrs = 1 Day (LAM)

b) the topocentric radius (expressed in astronomical units) times

the cosine of the latitude, (DELXY)

c) the topocentric radius (in A.U.'s) times the sine of the latitude

(DELTAZ)

13) A set of N cards, free-field format.

a) right ascension of Ith observation (EPH [I,l]) in hours
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b) declination of Ith observation (EPH [I,2]) in degrees

c) Julian date at Oh U.T. of the Ith observation calendar date (EPH[I,3])

14) One set of N cards, free-fleld format.

a) If SPACET then read in the Unlversal times of the N observations (in

decimals of a day). (UT[I]).

b) If not SPACET then read in the zero-longltude (at Oh U.T.) sidereal

time (in hours), and the Universal times (hours) of the N observations.

(SDT[I], UT[I]).

15) If not GROUNDER, a set of cards in the following order, free-fleld format.

a) one card, the number of days interval between the time arguments of

the solar or planetary X, Y, Z data that is to be used. (QRS)

For eac___hhobservatlon, four X, Y, Z coordinates (of the sun or observed

planet) are required to be input so that interpolation to the time of obser-

vation may be sufficiently accurate. If QRS is equal to one day (see (a)),

then the Julian date of the second X, Yp Z position of the every four should

be equal to the Julian date of eac___._hobservatlon. If QRS is not equal to one

day, the X, Y, Z positions should be chosen so that the observation date

falls between the second and third of each set.

b) a set of N card groups, free-field. The Julian date for each second

X, Y, Z position goes on the first card, followed by four cards with X, Y, Z

positions themselves, selected as described above.

(JULIO[I], SUNCI[I,J], SVNC2[I,J], SUNC3[I,J], SUNC4[I,J]).

This ends the data required for the orbit calculation program.

D. LIBRATION COEFFICIENT PROGRAM.

File declaratlons CR = card reader and CPH R card punch are needed.

Data input consists of a slngle card, free-fleld format, which gives a B
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value (see Sec. 3) and an f value. The order is B first and f second in

normal use, but the coefficients generated should be checked by making a run

with the order reversed.

E. POLYNOMIAL LEAST-SQUARES.

All files are declared. The data arrangement of the original program

is described in Burroughs Technlcal Bulletin MES-134. This has been modified

twice since 1964. The first modification has been described by Hoyle (1964).

A reprint of his description is included with the program deck. The only

modification we have made in addition to Hoyle's I/O are the followlng

Boolean options which must be included in each data deck (For LANS, there

are six consecutive ones):

a) one card, L6, option PUNCHOFT, if true, the output will be on cards

and if P = N = 2 then the deck will be ready to be put in LANS. Coefficients

up to P + 1 order are included,

b) one card, L6, option REPET, if true, a regression of y on x as well

as x on y can be obtained without changing the data order.

c) one card, 5L6, options STEPN, INTEG, DIFFL, SELFC, FOLLOW. For

LANS, STEPN + TRUE, INTEG, DIFFL, SELFC, normally set false, and FOLLOW set

true, for all but the las___./tdata deck,

d)

e)

f)

included power of X.

one set of data cards (For LANS there will be six separate data decks),

group of data should end with a blank card.

one card, 12, Xl, 12, giving the order of iteration and highest

(For LANS both of these should be set to 2).



-84-

F. CALENDAR DATE CONVERTER.

Files CR = card reader, LP = line printer need to be declared.

a) one card, free-fleld, integer giving the number of dates to be

converted. (R)

b) R cards, free-fleld, (don't forget the quotation marks for the

alpha varlables) with following flelds per card.

a) alpha variable, abbreviation of the month - JAN, FEB, MAR, APR,

HAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC, are allowed (MON).

b) integer giving day

c) integer "

d) " "

e) " "

f) real "

g) alpha "

(DY)

year (YR)

hour (HR)

minutes (m)

seconds (s)

type of time used, abbreviation.

G. ORTHOGONAL POLYNOMIAL PROGRAM.

This program is run without modification. For information on operation

see Burroughs Bu!letln PTS-063.

H. CENTER-OF-MASS PROGRAH

Files CR - card reader and CPH = card punch must be declared. Input data

required are:

a) one card, free-field, integer giving the total number of center-

of-mass positions required. Note: all planetary coordinates to be used

must be subtabulated to the same time epoch and interval before putting

in this program. (NN<65).
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b) nine card groups. First card, free-field format, of each group

is a real number giving the mass fractions of one planet relative to the sun

(see Explanatory Supplement). This first card is followed by NN cards giving

the planet heliocentric coordinates X, Y, Z per card in 3E20.11 format.

I. TWO DIMENSIONAL NEWTON INTERPOLATION PROGRAM.

DATA INPUT only:

a)

6EIZ.3

b)

For Z = f(x,y).

one card, L6, option PUNCHOPT, if true data is punched out in format

one card, free-fleld, integer giving number of data sets to be

processed. (Q)

c) one card, free-fleld, inter giving the number of different values

to be interpolated from each data set. (L)

d) one card, fzee-fleld, two integers, N and M giving the number

of X values, and the number of ¥ values respectlvely.

e) one card, free-fleld, two integers, NN<N-I and MM<M-I giving the

number of differences for X adn Y respectively.

f) in format 6EI0.2, N values of the x variables

g) in format 6EI0.2, M values of the y variables

h) in format 6EI0.2, Q x N x M values of fq(x,y) function.

j) L cards, free-fleld, giving x, y values for which new f(x,y) are

to be found.

This concludes the brief data-input descriptions. For further details, the

program listlngs and flow charts should be consulted.
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SUMMARY

In the preceding sections we have outlined the structure and philosophy

of the Lunar Astronomical Navigation System (LANS). Although the present

accuracy is not quite sufficient for surface geodetic studies, it is probably

sufficient for all celestial navigation tasks. Upon completion of the lunar

orbiter and surveyor programs, the physical constants should be very much

improved. Thus even by the first Apollo flights very accurate (=+0_i)

ephemertdtes might be generated, if necessary. However, a number of diffi-

culties remain. Of particular interest are:

a) lunar libration constants, free libration and long-period forced

libratlons,

b) amount of the center-of-flgure and center-of-mass displacement,

especially along the radial direction,

c) actual deflections of the vertical; accelerometer measurements

in the three coordinate axes, not Just the vertical component,

d) observational testing of LANS, both on the earth and from space, includ-

ing simulation of navigation problems which were not possible in the present

contract.

e) accurate geold and gravity field parameters.

Item (a) can be studied in a number of ways both from the lunar sur-

face and from the earth, but requires a concentrated effort.

Items (b) and (e) should be avallable as a result of the lunar orbiter

and surveyor studies.

Item (c) may be availablefrom some geological experiments now being

planned, but it is important to measure the total gravity vector. If

this is not Included in the planning, it should be.
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Item (d) is very improtant. Testing using the EARTBY option is to be carried

out at MSFC. Tests from the luna_.___rsurfacevrlorto Apollo missions are re-

commended, if possible. Otherwise, lunar surface operations during the

first Apollo flights for LANS testing will be necessary.

Using the LANS basic program and gravity and geoid constants (up to fourth

order) given by Ooudas (1966) and Ooudas and Bray (1966), we have generated

a set of tables giving deflections of the vertical, the total gravity vector

(normalized) and the normalized geold radius as a function of spherical

longitude and latitude (+_75° longitude +_75° latitude in I0 ° steps). Also,

we have generated a table of the gravity and geoid pseudo-coordinates as a

function of spherical longitude and latitude. (Of course, these do not

include local variations). The pseudo coordlante tables were generated for

every degree step between +_60° longltude and +--60° latltude. Tapes of the

pseudo-coordinate tables are available.

Copies of the all LANS programs and data will be maintained at Leander

McCormick Observatory and will be available, if a disaster destroys other

existing copies. We do not plan to obtain or use magnetic tape masters of

the input data, however. These can be obtained from the U. S. Naval Obser-

vatory.

Comments and inquiries about LANS should be directed to Marshall Space

Flight Center rather than to the observatory. It is hoped that some of this

material will be available for future publication.

It is a pleasure to acknowledge the help of the following persons and

groups for their contributions in the completion of this project.

Dr. Donald Eckhardt of the Air Force Cambridge Research Laboratories for

his special set of llbration constants.
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The Computer Science Center at the University of Virginia for a grant

which enabled the pseudo-coordlnate tables to be generated for a large segment

of the vlslble portion of the Noon.
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PROCEDURE FUNCTION;

READ COEFFICIENTS FOR SPHERICAL HARMONIC

EXPANSIONS OF GEOID AND GRAVITY FIELD,
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Appendix 3 - TABLE OF SYMBOLS.



TABLE OF SYMBOLS USED IN LANS.

i, 4, R', I - lunar equatorial constants relative to earth equator (used

in American Ephemeris and Nautical Almanac).

A, B, C - Principal Moments of Inertia (Moon).

_, B, y - Moments of Inertia ratios (Moon).

f = -=/8 - Lunar Flattening ratio.

Ae - Total Deflection of the Vertical.

Xo, Yo, Zo - Coordinates of Center-of-Mass of Solar System, (heliocentric

equatorial 1950.0).

Mn - Mass Fraction relative to Sun of nth planet. Xn, Yn, Zn " Heliocentric

rectangular equatorial 1950.0 coordinates of nth planet.

X, Y, Z or X, Y, Z - Geocentric or planetocentric coordinates (1950.0).

X, Y, Z or X, Y, Z - heliocentric coordinates (1950.0).

Ax, Ay, Az, Bx, By, B z - Equatorial orbital elements (see Dubyago 1962).

a, e, _, i, R, T - "Normal" orbital elements:

a = semi-major axis

e = eccentricity

= argument of periapsis

i = inclination to ecliptic

= ascending node

T = time of periapsis

to - Time epoch of geometric ephemeris.

T - light time.

Mo - Mean catalogue place.

A - Apparent coordinate position.

R - Complete star reduction = apparent = mean.

E - "E" term of aberration (see Explanatory Supplement).

_, 8 - Ecliptic longitude and latitude.

K - Aberration constant.

e, _ - orbital eccentricity (of earth), argument of perihelion of earth.



$

_ - Longitude (ecliptic) of the descending node (orbital or equatorial).

- Longitude (ecliptic) of the ascending node. (orbital or equatorial).

W - angular rotation rate of body (sometimes in literature as _).

RIGHT ASCENSION
_, 6 (or R.A., Dec.) - Equatorial angular coordinates

DECLINATION

i - Inclination of orbit or equatorial plane to ecliptic.

L. H. A. - Local Hour Angle of object (sometimes in literature as left

hour angle.)

HA - Hour angle (zero longitude or local).

Long. Let. - Longitude and latitude, topocentric station coordinates.

ST - Sidereal time (zero longitude or local).

XI, YI, ZI - Heliocentric rectangular coordinates.

X2, Y2, Z2 - Selenocentric rectangular coordinates.

AZ, ALT - Topocentric angular coordinates of object.

X', Y' , Z' - Heliocentric or geocentric ecliptic rectangular coordinates.

- Obliquity of ecliptic (= i for the earth).

R - Geocentric vector of sun.

r - Geocentric vector of moon.

p - Selenocentric vector of sun.

r_ - Selenocentric vector of planet.

rp - Geocentric vector of planet.

r' - Heliocentric vector of planet.
P

rcm - Center-of-mass vector (heliocentric).

(-p) - Heliocentric vector of station.

- Total aberration of light.

_s - Stellar aberration.

_p - Planetary aberration.



o, p, T - Lunar libration components is the perturbation of sidereal time
o is the perturbation of the node
0 is the nutation component.

W, I.
W = rotation rate

- Instantaneous lunar equatorial constants I = inclination, = longi-
tude of descendent node.

L, L', F, D - Delunay Lunar Variables

L = meananomaly of the moon
L' = meananomaly of the sun
F = distance of moonfrom the node
D = meanelongation of moonfrom sun.

K planet - Keplerian constant for a planet.

K sun - Keplerlan constant for the sun.


